Phenomenological stochastic isothermal creep model for an polivinylchloride elastron
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2008), pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The statistical analysis of experimental data on creep polyvinylchloride elastron is executed at $T=24^{\circ}C$. The stochastic uniaxial creep model is offered and the substantiation of some the hypotheses used at model's construction on the basis data's experimental is lead. Check of adequacy of the stochastic equations to experimental data is executed. Conformity of data's calculation and skilled data is observed.
@article{VSGTU_2008_1_a6,
     author = {V. P. Radchenko and E. P. Goludin},
     title = {Phenomenological stochastic isothermal creep model for an polivinylchloride elastron},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {45--52},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a6/}
}
TY  - JOUR
AU  - V. P. Radchenko
AU  - E. P. Goludin
TI  - Phenomenological stochastic isothermal creep model for an polivinylchloride elastron
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 45
EP  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a6/
LA  - ru
ID  - VSGTU_2008_1_a6
ER  - 
%0 Journal Article
%A V. P. Radchenko
%A E. P. Goludin
%T Phenomenological stochastic isothermal creep model for an polivinylchloride elastron
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 45-52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a6/
%G ru
%F VSGTU_2008_1_a6
V. P. Radchenko; E. P. Goludin. Phenomenological stochastic isothermal creep model for an polivinylchloride elastron. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2008), pp. 45-52. http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a6/

[1] Bolotin V. V., Prognozirovanie resursov mashin i konstruktsii, Mashinostroenie, M., 1984

[2] Lomakin V. A., Statisticheskie zadachi mekhaniki tvërdykh deformiruemykh tel, Nauka, M., 1970

[3] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[4] Kuksa L. V., Lebedev A. A., Kovalchuk B. I., “O zakonakh raspredeleniya mikrodeformatsii v dvukhfaznykh polikristallicheskikh splavakh pri prostom i slozhnom nagruzheniyakh”, Problemy prochnosti, 1986, no. 1, 7–11

[5] Bogachev I. I. Vainshtein A. A., Volkov S. D., Statisticheskoe metallovedenie, Metallurgiya, M., 1984 | Zbl

[6] Popov N. N., Samarin Yu. P., “Issledovanie polei napryazhenii vblizi granitsy stokhasticheski neodnorodnoi poluploskosti pri polzuchesti”, PMTF, 29:1 (1988), 159–164 | DOI

[7] Kuznetsov V. A., “Polzuchest stokhasticheski neodnorodnykh sred v usloviyakh ploskogo napryazhennogo sostoyaniya”, Matematicheskaya fizika, Sb. nauch. tr., KPtI, Kuibyshev, 1977, 69–74

[8] Popov N. N., Samarin Yu. P., “Prostranstvennaya zadacha statsionarnoi polzuchesti stokhasticheski neodnorodnoi sredy”, PMTF, 26:2 (1985), 150–155 | DOI

[9] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Reshenie stokhasticheskoi kraevoi zadachi ustanovivsheisya polzuchesti dlya tolstostennoi truby metodom malogo parametra”, PMTF, 47:1 (2006), 161–171 | DOI | Zbl

[10] Popov N. N., Radchenko V. P., “Nelineinaya stokhasticheskaya zadacha polzuchesti neodnorodnoi ploskosti s uchetom povrezhdennosti materiala”, PMTF, 48:2 (2007), 140–146 | DOI | Zbl

[11] Badaev A. N., “K voprosu ob opredelenii funktsii raspredeleniya parametrov uravneniya sostoyaniya polzuchesti”, Problemy prochnosti, 12 (1984), 22–26

[12] Radchenko V. P., Dudkin S. A., Timofeev M. I., “Eksperimentalnoe issledovanie i analiz polei neuprugikh mikro- i makroneodnorodnostei splava”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2002, no. 16, 111–117 | DOI

[13] Samarin Yu. P., Osnovnye fenomenologicheskie uravneniya polzuchesti materialov, Dis. ... dokt. tekh. nauk, KPtI, Kuibyshev, 1973

[14] Samarin Yu. P., “O primenenii stokhasticheskikh uravnenii v teorii polzuchesti materialov”, Izv. AN SSSR. MTT, 1974, no. 1, 88–94

[15] Radchenko V. P., Razrabotka strukturnykh i fenomenologicheskikh modelei deformirovaniya i razrusheniya materialov i elementov konstruktsii v usloviyakh polzuchesti, Dis. ... dokt. fiz.-mat. nauk, KPtI, Kuibyshev, 1992

[16] Radchenko V. P., Simonov A. V., Dudkin S. A., “Stokhasticheskii variant odnomernoi teorii polzuchesti i dlitelnoi prochnosti”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2001, no. 12, 73–84 | DOI

[17] Radchenko V. P., Samarin Yu. P., “Vliyanie polzuchesti na velichinu uprugoi deformatsii sloistogo kompozita”, Mekhanika kompozitnykh materialov, 1983, no. 2, 231–237 | DOI

[18] Melnikov S. V., Stokhasticheskie zadachi mekhaniki kompozitov s uchetom estestvennogo razbrosa svoistv komponentov, Avtoref. dis.$\dots$ kand. fiz.-mat. nauk, Novosibirsk, 1978

[19] Samarin Yu. P., Uravneniya sostoyaniya materialov so slozhnymi reologicheskimi svoistvami, Kuibyshevskii gosuniversitet, Kuibyshev, 1979

[20] Samarin Yu. P., “Postroenie eksponentsialnykh approksimatsii dlya krivykh polzuchesti metodom posledovatelnogo vydeleniya eksponentsialnykh slagaemykh”, Problemy prochnosti, 1974, no. 9, 24–27

[21] “Raschetnye i raschetno-eksperimentalnye metody opredeleniya nesuschei sposobnosti i dolgovechnosti elementov mashin i konstruktsii”, Raschetno-eksperimentalnyi metod opredeleniya parametrov polzuchesti i dlitelnoi prochnosti pri odnoosnom nagruzhenii v usloviyakh nestatsionarnogo nagruzheniya, Metodicheskie rekomendatsii (I-ya redaktsiya), Gosstandart, M., 1982, 39–47

[22] Radchenko V. P., Simonov A. V., “Razrabotka avtomatizirovannoi sistemy postroeniya modelei neuprugogo deformirovaniya metallov na osnove metodov neparametricheskogo vyravnivaniya eksperimentalnykh dannykh”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 1999, no. 7, 51–62 | DOI