Mathematical modeling of motion of the asteroid~99942 Apophis on the basis of Adams methods with a~variable step size
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2008), pp. 144-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The choice of Adams methods with divided differences has been validated for solving of the equations of motion of small bodies of the Solar system. The numerical integration with a variable step size of differential equations of motion of the asteroid 99942 Apophis has been carried out with the help of these methods. The moments of closest approaches to major planets and the Moon by this minor planet has been determined. The evolution of its orbit has been investigated on 600 years time interval.
@article{VSGTU_2008_1_a33,
     author = {V. V. Abramov},
     title = {Mathematical modeling of motion of the asteroid~99942 {Apophis} on the basis of {Adams} methods with a~variable step size},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {144--148},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a33/}
}
TY  - JOUR
AU  - V. V. Abramov
TI  - Mathematical modeling of motion of the asteroid~99942 Apophis on the basis of Adams methods with a~variable step size
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 144
EP  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a33/
LA  - ru
ID  - VSGTU_2008_1_a33
ER  - 
%0 Journal Article
%A V. V. Abramov
%T Mathematical modeling of motion of the asteroid~99942 Apophis on the basis of Adams methods with a~variable step size
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 144-148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a33/
%G ru
%F VSGTU_2008_1_a33
V. V. Abramov. Mathematical modeling of motion of the asteroid~99942 Apophis on the basis of Adams methods with a~variable step size. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2008), pp. 144-148. http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a33/

[1] Everhart E., “Implicit single methods for integrating orbits”, Celestial Mechanics, 1974, no. 10, 35–55 | DOI | MR | Zbl

[2] Kholl Dzh., Uatt Dzh., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[3] Abramov V. V., “Primenenie metodov Adamsa k resheniyu uravnenii dvizheniya bolshikh planet, Luny i Solntsa”, Mat. modelirovanie i kraevye zadachi, Tr. Tretei Vseros. nauchn. konf. Ch. 3, SamGTU, Samara, 2006, 13–19

[4] Abramov V. V., “Sovmestnoe ispolzovanie metodov Adamsa i Everkharta dlya resheniya uravnenii dvizheniya nebesnykh tel”, Differentsialnye uravneniya i ikh prilozheniya, SamDif-2007. Konferentsiya. Tezisy dokladov (Samara, 29 yanvarya–2 fevralya 2007 g.), Univers grupp, Samara, 2007, 16–17

[5] Abramov V. V., “Issledovanie skhodimosti resheniya pri modelirovanii tesnykh sblizhenii nebesnykh tel s pomoschyu metoda Adamsa–Multona”, Aktualnye problemy sovremennoi nauki, Trudy 3-go Mezhdunarodnogo foruma (8-i Mezhdunar. konf. molodykh uchenykh i studentov). Estestvennye nauki. Chast 3: Mekhanika. Mashinostroenie, SamGTU, Samara, 2007, 6–14

[6] Newhall X. X., Standish Jr. E. M., Williams J. G., “DE102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. Astrophys, 1983, no. 125, 150–167 | Zbl

[7] Zausaev A. F. Zausaev A. A., Katalog orbitalnoi evolyutsii korotkoperiodicheskikh komet s 1900 po 2100 gg., Mashinostroenie-1, M., 2005

[8] Abramov V. V., “Matematicheskoe modelirovanie dvizheniya malykh tel Solnechnoi sistemy na osnove metodov Adamsa”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2006, no. 43, 192–194 | DOI