Parametrical identification of creep's curve on the basis of stochastic difference equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2008), pp. 90-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical method of parametrical identification of the creep's curve is considered, allowing to increase accuracy of forecasting of processes not elastic deformations in tasks of an estimation of individual behavior of a concrete element of a structure. The method is based on linear parametrical discrete model, describing in the form of stochastic difference equations results of supervision of creep's curve during experiment lays.
@article{VSGTU_2008_1_a13,
     author = {V. E. Zoteev},
     title = {Parametrical identification of creep's curve on the basis of stochastic difference equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {90--95},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a13/}
}
TY  - JOUR
AU  - V. E. Zoteev
TI  - Parametrical identification of creep's curve on the basis of stochastic difference equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 90
EP  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a13/
LA  - ru
ID  - VSGTU_2008_1_a13
ER  - 
%0 Journal Article
%A V. E. Zoteev
%T Parametrical identification of creep's curve on the basis of stochastic difference equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 90-95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a13/
%G ru
%F VSGTU_2008_1_a13
V. E. Zoteev. Parametrical identification of creep's curve on the basis of stochastic difference equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2008), pp. 90-95. http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a13/

[1] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[2] Radchenko V. P., Dudkin S. A., Timofeev M. I., “Eksperimentalnoe issledovanie i analiz polei neuprugikh mikro- i makro neodnorodnostei splava AD-1”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2002, no. 16, 111–117 | DOI

[3] Radchenko V. P., “Energeticheskii podkhod k prognozirovaniyu polzuchesti i dlitelnoi prochnosti materialov v stokhasticheskoi postanovke”, Problemy prochnosti, 1992, no. 2, 34–40

[4] Samarin Yu. P., “Postroenie eksponentsialnykh approksimatsii dlya krivykh polzuchesti metodom posledovatelnogo vydeleniya eksponentsialnykh slagaemykh”, Problemy prochnosti, 1974, no. 9, 24–27

[5] Radchenko V. P., Zoteev V. E., “Opredelenie dinamicheskikh kharakteristik mekhanicheskoi sistemy na osnove stokhasticheskikh raznostnykh uravnenii kolebanii”, Izvestiya vuzov. Mashinostroenie, 2007, no. 1, 3–10