The nonlinear creep?s problem?s decision for medium with casual reological characteristics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2008), pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spatial problem's decision stress-strain stochastically inhomogeneous's state medium based of linearization the creep's equations with using the spectral representations is received. The determining creep's equation, taken in the form of power function from intensity of stress, in the stochastic form is formulated. A statistical analysis of random fields stresses and deformations speeds is completed.
@article{VSGTU_2008_1_a11,
     author = {N. N. Popov and S. A. Zabelin},
     title = {The nonlinear creep?s problem?s decision for medium with casual reological characteristics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {79--84},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a11/}
}
TY  - JOUR
AU  - N. N. Popov
AU  - S. A. Zabelin
TI  - The nonlinear creep?s problem?s decision for medium with casual reological characteristics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 79
EP  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a11/
LA  - ru
ID  - VSGTU_2008_1_a11
ER  - 
%0 Journal Article
%A N. N. Popov
%A S. A. Zabelin
%T The nonlinear creep?s problem?s decision for medium with casual reological characteristics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 79-84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a11/
%G ru
%F VSGTU_2008_1_a11
N. N. Popov; S. A. Zabelin. The nonlinear creep?s problem?s decision for medium with casual reological characteristics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2008), pp. 79-84. http://geodesic.mathdoc.fr/item/VSGTU_2008_1_a11/

[1] Lomakin V. A., Statisticheskie zadachi mekhaniki tverdykh deformiruemykh tel, Nauka, M., 1970 | Zbl

[2] Dolzhkovoi A. A., N. N. Popov, V.P. Radchenko, “Reshenie stokhasticheskoi kraevoi zadachi ustanovivsheisya polzuchesti dlya tolstostennoi truby metodom malogo parametra”, PMTF, 47:1 (2006), 166–171 | DOI

[3] Popov N. N., Isutkina V. N., “Postroenie analiticheskogo resheniya dvumernoi stokhasticheskoi zadachi ustanovivsheisya polzuchesti dlya tolstostennoi truby”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2007, no. 2(15), 90–94 | DOI

[4] Radchenko V. P., Popov N. N., “Statisticheskie kharakteristiki polei napryazhenii i deformatsii pri ustanovivsheisya polzuchesti stokhasticheski neodnorodnoi ploskosti”, Izv. vuzov. Mashinostroenie, 2006, no. 2, 3–11

[5] Popov N. N., Zabelin S. A., “Reshenie nelineinoi stokhasticheskoi zadachi metodom malogo parametra pri ploskom napryazhennom sostoyanii”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2006, no. 43, 106–112 | DOI

[6] Popov N. N., Samarin Yu. P., “Prostranstvennaya zadacha statsionarnoi polzuchesti stokhasticheski neodnorodnoi sredy”, PMTF, 26:2 (1985), 150–155 | DOI

[7] Sveshnikov A. A., Prikladnye metody teorii sluchainykh funktsii, Nauka, M., 1968 | MR | Zbl