Proper oscillation of ultimate thick-wall finite anisotropic cylinder
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 116 (2008) no. 1, pp. 63-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Considering the correlation of linear theory of elasticity of anisotropic body, a new closed solution of the task on axes symmetrical oscillation of round orthotropic short cylinder is shown taking into account the viscous drag force. Structural algorithm of the method of final integral transformations is used. The spectrum of circular frequencies of free axes symmetrical oscillations of anisotropic cylinder made of glass-fiber material is analyzed.
@article{VSGTU_2008_116_1_a9,
     author = {Yu. \`E. Senitskii and V. V. Epishkin},
     title = {Proper oscillation of ultimate thick-wall finite anisotropic cylinder},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {63--71},
     year = {2008},
     volume = {116},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a9/}
}
TY  - JOUR
AU  - Yu. È. Senitskii
AU  - V. V. Epishkin
TI  - Proper oscillation of ultimate thick-wall finite anisotropic cylinder
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 63
EP  - 71
VL  - 116
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a9/
LA  - ru
ID  - VSGTU_2008_116_1_a9
ER  - 
%0 Journal Article
%A Yu. È. Senitskii
%A V. V. Epishkin
%T Proper oscillation of ultimate thick-wall finite anisotropic cylinder
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 63-71
%V 116
%N 1
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a9/
%G ru
%F VSGTU_2008_116_1_a9
Yu. È. Senitskii; V. V. Epishkin. Proper oscillation of ultimate thick-wall finite anisotropic cylinder. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 116 (2008) no. 1, pp. 63-71. http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a9/

[1] Fridman L. I., “Dinamicheskaya zadacha teorii uprugosti dlya tsilindra konechnykh razmerov”, Prikladnaya mekhanika, 17:3 (1981), 37–43 | Zbl

[2] Senitskii Yu. E., “K resheniyu osesimmetrichnoi zadachi dinamiki dlya anizotropnogo korotkogo tolstostennogo tsilindra”, Prikladnaya mekhanika, 17:8 (1981), 95–100

[3] Senitskii Yu. E., Issledovanie uprugogo deformirovaniya elementov konstruktsii pri dinamicheskikh vozdeistviyakh metodom konechnykh integralnykh preobrazovanii, Izd-vo SGU, Saratov, 1985

[4] Tseitlin A. I., Kusainov A. A., Metody ucheta vnutrennego treniya v dinamicheskikh raschetakh konstruktsii, Nauka, Alma-Ata, 1987

[5] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Gosizdat tekhn.-teoret. lit., M.-L., 1950

[6] Butkovskii A. G., Kharakteristiki sistem s raspredelennymi parametrami, Nauka, M., 1979 | MR

[7] Ashkenazi E. K., Anizotropiya mashinostroitelnykh materialov, Mashinostroenie, L., 1969