Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2007_2_a8, author = {L. V. Stepanova and M. E. Fedina}, title = {Analysis of eigenvalues for problem on the transverse shear crack in material with power defining law}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {60--68}, publisher = {mathdoc}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a8/} }
TY - JOUR AU - L. V. Stepanova AU - M. E. Fedina TI - Analysis of eigenvalues for problem on the transverse shear crack in material with power defining law JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2007 SP - 60 EP - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a8/ LA - ru ID - VSGTU_2007_2_a8 ER -
%0 Journal Article %A L. V. Stepanova %A M. E. Fedina %T Analysis of eigenvalues for problem on the transverse shear crack in material with power defining law %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2007 %P 60-68 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a8/ %G ru %F VSGTU_2007_2_a8
L. V. Stepanova; M. E. Fedina. Analysis of eigenvalues for problem on the transverse shear crack in material with power defining law. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2007), pp. 60-68. http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a8/
[1] Hutchinson J. W., “Singular behavior at the end of tensile crack in a hardening material”, J. Mech. Phys. Solids, 16 (1968), 13–31 | DOI | Zbl
[2] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16 (1968), 1–12 | DOI | Zbl
[3] Yuan F. G., Yang S., “Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear”, Int. J. of Fracture, 69 (1994), 1–26 | DOI
[4] Nikishkov G. P., “An algorithm and a computer program for the three-term asymptotic expansion of elastic-plastic crack tip stress and displacement fields”, Engineering Fracture Mech., 50:1 (1995), 65–83 | DOI
[5] B. N. Nguyen, P. R. Onck, E. Van Der Giessen, “On higher-order crack-tip fields in creeping solids”, Trans. of the ASME. J. Appl. Mech., 67:2 (2000), 372–382 | DOI | Zbl
[6] Hui C. Y., Ruina A., “Why K? High order singularities and small scale yielding”, Int. J. of Fracture, 72 (1995), 97–120
[7] Williams M. L., “On the stress distribution at the base of a stationary crack”, Trans. ASME. J. Appl. Mech., 24 (1957), 109–114 | MR | Zbl
[8] Williams M. L., “Stress singularities resulting from varios boundary conditions in angular corners of plates in tension”, J. of Appl. Mech., 19 (1952), 526–528
[9] Meng L., Lee S. B., “Eigenspectra and orders of singularity at a crack tip for a power-law creeping medium”, Int. J. of Fracture, 92 (1998), 55–70 | DOI
[10] Chen D. H., Ushijima K., “Plastic stress singularity near the tip of a $\mathrm{V}$-notch”, Int. J. of Fracture, 106 (2000), 117–134 | DOI
[11] Neuber H., “Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law”, J. of Appl. Mech., 28 (1961), 544–550 | DOI | MR | Zbl
[12] Anheuser M., Gross D., “Higher order fields at crack and notch tips in power-law materials under longitudinal shear”, Arch. of Appl. Mech., 64 (1994), 509–518 | DOI | Zbl
[13] Naife A. Kh., Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR
[14] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Sam. un-t, Samara, 2006
[15] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR
[16] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR