Non-local problem with fractional derivatives for one hyperbolic equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2007), pp. 33-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate and research the non-local boundary value problem with fractional integro-differentiation operators for one partial case of the moisture transfer equation. The one-valued solvability of this problem is proved.
@article{VSGTU_2007_2_a4,
     author = {E. Yu. Arlanova},
     title = {Non-local problem with fractional derivatives for one hyperbolic equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {33--36},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a4/}
}
TY  - JOUR
AU  - E. Yu. Arlanova
TI  - Non-local problem with fractional derivatives for one hyperbolic equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 33
EP  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a4/
LA  - ru
ID  - VSGTU_2007_2_a4
ER  - 
%0 Journal Article
%A E. Yu. Arlanova
%T Non-local problem with fractional derivatives for one hyperbolic equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 33-36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a4/
%G ru
%F VSGTU_2007_2_a4
E. Yu. Arlanova. Non-local problem with fractional derivatives for one hyperbolic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2007), pp. 33-36. http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a4/