Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2007_2_a37, author = {V. V. Abramov}, title = {Mathematical modeling of close encounters of {Solar} system small bodies with major planets and the {Moon}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {151--154}, publisher = {mathdoc}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a37/} }
TY - JOUR AU - V. V. Abramov TI - Mathematical modeling of close encounters of Solar system small bodies with major planets and the Moon JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2007 SP - 151 EP - 154 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a37/ LA - ru ID - VSGTU_2007_2_a37 ER -
%0 Journal Article %A V. V. Abramov %T Mathematical modeling of close encounters of Solar system small bodies with major planets and the Moon %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2007 %P 151-154 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a37/ %G ru %F VSGTU_2007_2_a37
V. V. Abramov. Mathematical modeling of close encounters of Solar system small bodies with major planets and the Moon. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2007), pp. 151-154. http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a37/
[1] Dzh. Kholl., Dzh. Uatt, Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979
[2] Abramov V. V., “Primenenie metodov Adamsa k resheniyu uravnenii dvizheniya bolshikh planet, Luny i Solntsa”, Tr. Tretei Vseros. nauchn. konf. Ch. 3, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2006, 13–19
[3] Abramov V. V., “Effektivnost metoda Adamsa–Multona pri matematicheskom modelirovanii dvizheniya malykh tel Solnechnoi sistemy”, Nelineinyi dinamicheskii analiz-2007, Tez. dokl. mezhdunar. kongr., SPbGU, SPb., 2007
[4] Everhart E., “Implicit single methods for integrating orbits”, Celestial Mechanics, 1974, no. 10, 35–55 | DOI | MR | Zbl
[5] A. F. Zausaev, A. A. Zausaev, A. G. Olkhin, “Primenenie metoda Everkharta 31-go poryadka dlya resheniya uravnenii dvizheniya bolshikh planet”, Tr. GAISh, 75, 2004, 209–210, VAK-2004
[6] X. X. Newhall, E. M. Standish Jr., J. G. Williams, “DE102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. Astrophys., 1983, no. 125, 150–167 | Zbl
[7] V. V. Abramov, S. S. Denisov, L. A. Solovev, “Modelirovanie sblizhenii asteroida 99942 Apophis s vnutrennimi planetami i Lunoi”, Tez. dokl. XXXII Samarskoi obl. stud. nauchn. konf., Ch. 1, Samara, 2006, 101
[8] Abramov V. V., “Matematicheskoe modelirovanie dvizheniya malykh tel Solnechnoi sistemy na osnove metodov Adamsa”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2006, no. 43, 192–194 | DOI