Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2007), pp. 192-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new approach for constructing the mathematical model of Kelvin body in Lagrange coordinates.
@article{VSGTU_2007_2_a34,
     author = {G. V. Pavlov and A. V. Alimov},
     title = {Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by {Calvin} bodies},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {192--194},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a34/}
}
TY  - JOUR
AU  - G. V. Pavlov
AU  - A. V. Alimov
TI  - Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 192
EP  - 194
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a34/
LA  - ru
ID  - VSGTU_2007_2_a34
ER  - 
%0 Journal Article
%A G. V. Pavlov
%A A. V. Alimov
%T Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 192-194
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a34/
%G ru
%F VSGTU_2007_2_a34
G. V. Pavlov; A. V. Alimov. Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2007), pp. 192-194. http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a34/

[1] O. A. Goroshko, K. Khedrikh, Analitichka dinamika (mekhanika) diskretnikh naslednikh sistema, Izdavachka Univerziteta u Nishu, 2000

[2] Radchenko V. P., Shapievskii D. V., “Analiz nelineinoi obobschennoi modeli Maksvella”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2005, no. 38, 55–64 | DOI

[3] L. L. Makarova, V. V. Kondrashov, Dempfirovanie kolebanii v srede, modeliruemoi posledovatelnym soedineniem elementa Kelvina s parallelno soedinennymi elementami Foikhta i Dzheffrisa, Tul. gosud. un-t, Tula, 2005; Деп. в ВИНИТИ 24.06.2005. No 908-В2005

[4] Vasilenko N. V., Teoriya kolebanii, Vyssh. shk., Kiev, 1992 | Zbl