Stress calculation by the boundary element method using analytical integration
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2007), pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the formulas for analytical integration of dominant function components derivatives with respect to the arbitrary straight-line segment and arbitrary segment of circle. These formulas allow high-precision calculating of the stresses inside the deformable area. The effectiveness of using the formulas is shown on the example of solving the homogeneous tension problem for plate with circular hole.
@article{VSGTU_2007_2_a10,
     author = {V. P. Fedotov and L. F. Spevak and V. B. Trukhin},
     title = {Stress calculation by the boundary element method using analytical integration},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {79--84},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a10/}
}
TY  - JOUR
AU  - V. P. Fedotov
AU  - L. F. Spevak
AU  - V. B. Trukhin
TI  - Stress calculation by the boundary element method using analytical integration
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 79
EP  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a10/
LA  - ru
ID  - VSGTU_2007_2_a10
ER  - 
%0 Journal Article
%A V. P. Fedotov
%A L. F. Spevak
%A V. B. Trukhin
%T Stress calculation by the boundary element method using analytical integration
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 79-84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a10/
%G ru
%F VSGTU_2007_2_a10
V. P. Fedotov; L. F. Spevak; V. B. Trukhin. Stress calculation by the boundary element method using analytical integration. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2007), pp. 79-84. http://geodesic.mathdoc.fr/item/VSGTU_2007_2_a10/

[1] Gasilov V. L., Dumsheva E. S., Zenkova E. S., Fedotov V. P., “Chislennoe modelirovanie uprugoi zadachi na mnogoprotsessornykh vychislitelnykh sistemakh”, Algoritmy i programmnye sredstva parallelnykh vychislenii, Vyp. 6, UrO RAN, Ekaterinburg, 2002, 104–124

[2] Dumsheva E. S., Zenkova E. S., Fedotov V. P. i dr., “Chislenno-analiticheskii algoritm dlya resheniya zadach uprugosti, teploprovodnosti, diffuzii”, Algoritmy i programmnye sredstva parallelnykh vychislenii, Vyp. 7, UrO RAN, Ekaterinburg, 2003, 70–86

[3] Brebbiya K., Telles Zh., Vroubel L. M., Metody granichnykh elementov, Mir, M., 1987 | MR

[4] Benerdzhi P., Batterfild R., Metody granichnykh elementov, Mir, M., 1984 | MR

[5] Fedotov V. P., Spevak L. F., “K analiticheskomu vychisleniyu integralov v chislenno-analiticheskom metode resheniya zadach matematicheskoi fiziki”, Vestn. Sam. gos. tekhn. un-ta. Cer.: Fiz.-mat. nauki, 2006, no. 43, 92–99

[6] Timoshenko S. P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975