Assessment of residual stresses relaxation in a hardened rotating blade under creep conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 62-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method for calculation and estimation of the residual stress in the surface-hardened layer of the rotating blade under creep condition is developed. The base of this method is the hypothesis that the hardened layer has no effect on the structural rigidity (acts as thin film sticked on its surface) and is deformed with it under the outer hard loading. Therefore the calculation of the kinetics of the residual stresses relaxation in the surface layer reduces to the gluing of the two boundary value problems solutions. During the first boundary value problem solving the stress-strain state of the rotating blade under the creep condition is determined without regard to the surface hardened layer. The second boundary value problem shows the researching of the residual stress relaxation in the surface hardened layer, the layer is considered to be the whole, which is deformated under the hard loading with given values of strain components, determined in the first boundary value problem solution.
@article{VSGTU_2007_1_a9,
     author = {M. N. Saushkin and O. S. Afanas'eva and E. A. Prosvirkina},
     title = {Assessment of  residual stresses relaxation  in a hardened rotating blade under creep conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {62--70},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a9/}
}
TY  - JOUR
AU  - M. N. Saushkin
AU  - O. S. Afanas'eva
AU  - E. A. Prosvirkina
TI  - Assessment of  residual stresses relaxation  in a hardened rotating blade under creep conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 62
EP  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a9/
LA  - ru
ID  - VSGTU_2007_1_a9
ER  - 
%0 Journal Article
%A M. N. Saushkin
%A O. S. Afanas'eva
%A E. A. Prosvirkina
%T Assessment of  residual stresses relaxation  in a hardened rotating blade under creep conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 62-70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a9/
%G ru
%F VSGTU_2007_1_a9
M. N. Saushkin; O. S. Afanas'eva; E. A. Prosvirkina. Assessment of  residual stresses relaxation  in a hardened rotating blade under creep conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 62-70. http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a9/

[1] Radchenko V. P., Saushkin M. N., “Raschet relaksatsii ostatochnykh napryazhenii v poverkhnostno uprochnennom sloe tsilindricheskogo izdeliya v usloviyakh polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 12 (2001), 61–73 | DOI

[2] Radchenko V. P., Saushkin M. N., “Matematicheskie modeli vosstanovleniya i relaksatsii ostatochnykh napryazhenii v poverkhnostno uprochnennom sloe tsilindricheskikh elementov konstruktsii pri polzuchesti”, Izvestiya vuzov. Mashinostroenie, 2004, no. 11, 3–17

[3] Radchenko V. P., Saushkin M. N., Polzuchest i relaksatsiya ostatochnykh napryazhenii v uprochnennykh konstruktsiyakh, Mashinostroenie-1, M., 2005

[4] Saushkin M. N., Prosvirkina E. A., “Relaksatsiya ostatochnykh napryazhenii v poverkhnostno uprochnennom sloe sploshnogo vraschayuschegosya tsilindra v usloviyakh polzuchesti”, Mat. Modelirovanie i kraevye zadachi, Tr. Tretei Vseros. nauchn. konf. T. 1: Matematicheskie modeli mekhaniki, prochnosti i nadëzhnosti elementov konstruktsii, SamGTU, Samara, 2006, 192–199

[5] Pozdeev A. A., Nyashin Yu. I., Trusov P. V., Ostatochnye napryazheniya: teoriya i prilozheniya, Nauka, M., 1982

[6] Struzhanov V. V., Mironov V. I., Deformatsionnoe razuprochnenie materiala v elementakh konstruktsii, UrO RAN, Ekaterinburg, 1995

[7] Struzhanov V. V., Bashurov Vyach. V., “K opredeleniyu polei sobstvennykh deformatsii, initsiiruyuschikh vozniknovenie zadannogo polya ostatochnykh napryazhenii”, Aktualnye problemy sovremennoi nauki, Tr. 5-oi Mezhdunarodn. konf. molodykh uchenykh. Ch. 3, 4: Mekhanika. Mashinostroenie i mashinovedenie. Metallurgiya. Liteinoe proizvodstvo, SamGTU, Samara, 63–66

[8] Pervozvannyi A. A., Gaitsgori V. G., Dekompozitsiya, agregirovaniya i priblizhennaya optimizatsiya, Nauka, M., 1979

[9] Nikolskii V. V., Nikolskaya T. N., Dekompozitsionnyi podkhod k zadacham elektrodinamiki, Nauka, M., 1983

[10] Eremin Yu. A., “Diskretnoe i kontinualnoe agregirovanie v konstruktsiyakh pri polzuchesti”, Teoretiko-eksperimentalnyi metod issledovaniya polzuchesti v konstruktsiyakh, KuAI, Kuibyshev, 1984, 41–56

[11] Klebanov Ya. M., Davydov A. N., “Mnogourovnevaya dekompozitsiya konstruktsii metodom approksimiruyuschikh modelei”, Chislennye i analiticheskie metody rascheta konstruktsii, Tr. mezhdunarod. konf., SamGSA, Samara, 1998, 92–96

[12] Prosvirkina E. A., “Issledovanie effekta Sen-Venana pri rastyazhenii lopatki vraschayuschegosya diska v pole tsentrobezhnykh sil”, Mat. Modelirovanie i kraevye zadachi, Tr. Tretei Vseros. nauchn. konf. T. 1: Matematicheskie modeli mekhaniki, prochnosti i nadëzhnosti elementov konstruktsii, SamGTU, Samara, 2006, 172–176

[13] Demidov S. P., Teoriya uprugosti, Vysshaya shkola, M., 1979