Intrusion of wedge in the half-space under the Coulomb--Mohr yield criterion
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of wedge intrusion in the half-space was considered by R. Hill, E. Lie, and S. Tupper under the Mises yield criterion and Tresca yield criterion. In this case the perfect plastico-rigid body is incompressible. Under the Coulomb–Mohr yield criterion the changing of the material volume in the plasticity area takes place. The intention of this work is researching the strain fields in the different points of plasticity area: on the surfaces of the path velocity discontinuity and in the center of characteristics fan under the plain strain.
@article{VSGTU_2007_1_a6,
     author = {A. N. Anisimov and A. I. Chromov},
     title = {Intrusion of wedge in the half-space under the {Coulomb--Mohr} yield criterion},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {44--49},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a6/}
}
TY  - JOUR
AU  - A. N. Anisimov
AU  - A. I. Chromov
TI  - Intrusion of wedge in the half-space under the Coulomb--Mohr yield criterion
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 44
EP  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a6/
LA  - ru
ID  - VSGTU_2007_1_a6
ER  - 
%0 Journal Article
%A A. N. Anisimov
%A A. I. Chromov
%T Intrusion of wedge in the half-space under the Coulomb--Mohr yield criterion
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 44-49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a6/
%G ru
%F VSGTU_2007_1_a6
A. N. Anisimov; A. I. Chromov. Intrusion of wedge in the half-space under the Coulomb--Mohr yield criterion. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 44-49. http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a6/

[1] Sokolovskii V. V., Teoriya plastichnosti, Vyssh. shk., M., 1969

[2] Khromov A. I., Deformatsiya i razrushenie zhestkoplasticheskikh tel, Dalnauka, Vladivostok, 1996

[3] Khromov A. I., “Lokalizatsiya plasticheskikh deformatsii i razrushenie idealnykh zhestkoplasticheskikh tel”, Dokl. RAN, 362:2 (1998), 202–205 | MR | Zbl

[4] Tomas T., Plasticheskoe techenie i razrushenie v tverdykh telakh, Mir, M., 1964

[5] Khill R., Matematicheskaya teoriya plastichnosti, Izd-vo inostr. lit., M., 1956

[6] Bukhanko A. A., Khromov A. I., “Polya deformatsii pri vnedrenii klinoobraznykh i ploskikh shtampov”, Dalnevost. matem. zhurn., 2002, no. 2, 311–319, Ch. 3