Structural representation of inverse operator in Banach space
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 197-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of construction of inverse operator for the equation $Az=u$ ($u\in U$, $z\in F$; $U$, $F$ are metric spaces) is considered. The algorithm for solving the inverse problems based on structural representation of inverse operators as periodic structure is suggested. The necessary and sufficient conditions of fundamentality of periodic structure are formulated. It is shown that if these conditions are fulfilled the periodic structure operator converges to the inverse operator.
@article{VSGTU_2007_1_a39,
     author = {V. C. Tyan},
     title = {Structural representation of inverse operator in {Banach} space},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {197--200},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a39/}
}
TY  - JOUR
AU  - V. C. Tyan
TI  - Structural representation of inverse operator in Banach space
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 197
EP  - 200
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a39/
LA  - ru
ID  - VSGTU_2007_1_a39
ER  - 
%0 Journal Article
%A V. C. Tyan
%T Structural representation of inverse operator in Banach space
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 197-200
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a39/
%G ru
%F VSGTU_2007_1_a39
V. C. Tyan. Structural representation of inverse operator in Banach space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 197-200. http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a39/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[2] A. N. Tikhonov, A. V. Goncharskii (red.), Nekorrektnye zadachi estestvoznaniya, MGU, M., 1987

[3] Tikhonov A. N., Kalner V. D., Glasko V. B., Matematicheskoe modelirovanie tekhnologicheskikh protsessov i metod obratnykh zadach v mashinostroenii, Mashinostroenie, M., 1990 | MR

[4] K. A. Pupkov, N. D. Egupov (red.), Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya T. 2. Statisticheskaya dinamika i identifikatsiya sistem avtomaticheskogo upravleniya, MGTU, M., 2004

[5] Solodovnikov V. V., Semenov V. V., Spektralnaya teoriya nestatsionarnykh sistem upravleniya, Nauka, M., 1974

[6] Tikhonov A. N., Goncharovskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR

[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[8] Rapoport E. Ya., Tyan V. K., Dostizhenie zadannoi invariantnosti v stokhasticheskikh sistemakh kombinirovannogo upravleniya, Kuib. polit. in-t. Dep. v VINITI 20.06.89, No 4089-V89

[9] Tyan V. K., “Reshenie integralnogo uravneniya pervogo roda tipa svertki v nekorrektnykh zadachakh teorii upravleniya”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Tekhn. nauki, 2006, no. 40, 50–56

[10] Tyan V. K., “Teoriya periodicheskikh struktur v nekorrektnykh zadachakh sinteza invariantnykh i avtonomnykh sistem upravleniya”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Tekhn. nauki, 2006, no. 41, 47–54

[11] Tyan V. K., “Strukturnoe predstavlenie resheniya sistemy lineinykh algebraicheskikh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 43 (2006), 158–162 | DOI