Research of stability of solution of motion equations for small bodies of Solar system when using Adams-Moulton method
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 171-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Adams-Moulton method we research evolution of orbits of small bodies of Solar system, having few close encounters on chosen time interval. The analysis of stability of numerical integration of motion differential equations is made. The obtained results show the convergence of solution.
@article{VSGTU_2007_1_a30,
     author = {V. V. Abramov},
     title = {Research of stability of solution of motion equations for small bodies of {Solar} system when using {Adams-Moulton} method},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {171--174},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a30/}
}
TY  - JOUR
AU  - V. V. Abramov
TI  - Research of stability of solution of motion equations for small bodies of Solar system when using Adams-Moulton method
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 171
EP  - 174
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a30/
LA  - ru
ID  - VSGTU_2007_1_a30
ER  - 
%0 Journal Article
%A V. V. Abramov
%T Research of stability of solution of motion equations for small bodies of Solar system when using Adams-Moulton method
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 171-174
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a30/
%G ru
%F VSGTU_2007_1_a30
V. V. Abramov. Research of stability of solution of motion equations for small bodies of Solar system when using Adams-Moulton method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 171-174. http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a30/

[1] Zausaev A. F., Zausaev A. A., Olkhin A. G., “Primenenie metoda Everkharta 31 poryadka dlya resheniya uravnenii dvizheniya bolshikh planet”, Gorizonty Vselennoi, Tez. dokl. na Vseross. astronom. konf., MGU, GAISh, M., 2004, 209, VAK-2004

[2] Standish E. M., JPL Planetary and Lunar Ephemerides, DE 405/LE 405, Jet Prop Lab Technical Report. IOM 312. F-048, 1998

[3] Kholl Dzh., Uatt Dzh., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[4] Newhall X. X., Standish E. M. Jr., Williams J. G., “DE 102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. and Astrophys., 1983, no. 125, 150–167 | Zbl

[5] Abramov V. V., “Primenenie metodov Adamsa k resheniyu uravnenii dvizheniya bolshikh planet, Luny i Solntsa”, Matematicheskoe modelirovanie i kraevye zadachi, Tr. Tretei Vseros. nauchn. konf. Ch. 3, SamGTU, Samara, 2006, 13–19