Percolating model of gas breakdown
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 108-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the existing models of electrical breakdown. Using the theory of overflow to analyze the ionized overlap of gas space is suggested. The condition of spark breakdown of gas-discharge space for any field structure is defined based on the point of appearance of the infinitely connected cluster. The conjunction of primary avalanches which are able to create the conductive clusters along the streamer way is considered. The theoretical representations conform with published experimental data.
@article{VSGTU_2007_1_a16,
     author = {H. D. Lamazhapov},
     title = {Percolating model of gas breakdown},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {108--113},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a16/}
}
TY  - JOUR
AU  - H. D. Lamazhapov
TI  - Percolating model of gas breakdown
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 108
EP  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a16/
LA  - ru
ID  - VSGTU_2007_1_a16
ER  - 
%0 Journal Article
%A H. D. Lamazhapov
%T Percolating model of gas breakdown
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 108-113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a16/
%G ru
%F VSGTU_2007_1_a16
H. D. Lamazhapov. Percolating model of gas breakdown. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 108-113. http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a16/

[1] Raizer Yu. P., Fizika gazovogo razryada, Nauka, M., 1992

[2] Wang M. C., Kunhard E. E., “Streamer dynamics”, Phys. Rev. A, 42:4 (1990), 2366–2373 | DOI

[3] Vitello P. A., Penetrante B. M., Bardsley J. N., “Simulation of negative-streamer dynamics in nitrogen”, Phys. Rev. E, 49:6 (1990), 5574–5598 | DOI

[4] Mik Dzh., Kregs Dzh., Elektricheskii proboi v gazakh, IL, M., 1960

[5] Bazelyan E. M., Raizer Yu. P., Iskrovoi razryad, MFTI, M., 1997

[6] Reter G., Elektronnye laviny i proboi v gazakh, Mir, M., 1968

[7] Zalikhanov B. Zh., “Plazmennyi mekhanizm razryada v provolochnykh kamerakh v rezhime bolshogo gazovogo usileniya”, Fiz. el. chastits i at. yadra, 29:5 (1998), 1193–1258

[8] Yakovlenko S. I., “Mekhanizm rasprostraneniya strimera k anodu i k katodu, obuslovlennyi razmnozheniem elektronov fona”, Zhurnal tekhnicheskoi fiziki, 74:9 (2004), 47–54

[9] Shklovskii B. I., Efros A. L., Elektricheskie svoistva legirovannykh poluprovodnikov, Nauka, M., 1979

[10] Feder E., Fraktaly, Mir, M., 1991 | MR

[11] Repin P. B., Repev A. G., “Samoorganizatsiya kanalnoi struktury nanosekundnogo diffuznogo razryada v elektrodnoi sisteme provolochka-ploskost”, ZhETF, 71:5 (2001), 128–130

[12] Bazelyan E. M., Raizer Yu. P., Fizika molnii i molniezaschity, Fizmatlit, M., 2001

[13] Broadbent S. R., Hammersley I. M., “Percolation processes. 1. Crystals and mazes”, Proc. Camb. Phyl. Soc., 53 (1957), 629–641 | DOI | MR | Zbl

[14] Boeck W. L. et al., “Lightning induced brightening in the airglow layer”, Geophys. Res. Lett., 19 (1992), 99–102 | DOI