A study of the orbital evolution of 10 short-period comets by solving differential equations of motion obtained
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The research of the orbital evolution of 10 short-period comets on the time interval of 400 years (1800–2200) is made by solving the differential equations of motion based on the new principle of mutual interaction of material bodies. The results are compared with the orbital elements, calculated by solving the motion equations with regard to gravitational effect and relativistic effect. It is shown that the results of calculations obtained by two different methods are in agreement within acceptable inaccuracy.
@article{VSGTU_2007_1_a11,
     author = {A. F. Zausaev},
     title = {A study of the orbital evolution of 10 short-period comets by solving differential equations of motion obtained},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {79--84},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a11/}
}
TY  - JOUR
AU  - A. F. Zausaev
TI  - A study of the orbital evolution of 10 short-period comets by solving differential equations of motion obtained
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 79
EP  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a11/
LA  - ru
ID  - VSGTU_2007_1_a11
ER  - 
%0 Journal Article
%A A. F. Zausaev
%T A study of the orbital evolution of 10 short-period comets by solving differential equations of motion obtained
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 79-84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a11/
%G ru
%F VSGTU_2007_1_a11
A. F. Zausaev. A study of the orbital evolution of 10 short-period comets by solving differential equations of motion obtained. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 79-84. http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a11/

[1] Zausaev A. F., “Teoriya dvizheniya $n$ materialnykh tel, osnovannaya na novom printsipe vzaimodeistviya”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2006, no. 43, 132–139 | DOI

[2] Newhall X. X., Standish E. M., Williams Jr., “DE 102:A numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. Astrophys., 1983, no. 125, 150–167 | Zbl

[3] Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Prop Lab Technical Report. IOM 312.F-048, 1998

[4] Zausaev A. F., Zausaev A. A., Katalog orbitalnoi evolyutsii korotkoperiodicheskikh komet s 1900 po 2100 gg., Mashinostroenie-1, M., 2005

[5] Zausaev A. F., Zausaev A. A., Olkhin A. G., “Chislennoe integrirovanie uravnenii dvizheniya bolshikh planet (Merkurii-Pluton) i Luny s uchetom radiolokatsionnykh nablyudenii”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2004, 43–47 | DOI

[6] Everhart E., “Implist single methods for integrating orbits”, Central Mechanics, 10 (1974), 35–55 | MR | Zbl