On one nonlocal problem for the heat equation with an integral condition
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the non-local problem with the integral condition for the heat-transfer equation is studied. The existence and uniqueness theorem for the generalized solution is proved.
@article{VSGTU_2007_1_a0,
     author = {O. Yu. Danilkina},
     title = {On one  nonlocal problem for the heat equation with an integral condition},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {5--9},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a0/}
}
TY  - JOUR
AU  - O. Yu. Danilkina
TI  - On one  nonlocal problem for the heat equation with an integral condition
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 5
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a0/
LA  - ru
ID  - VSGTU_2007_1_a0
ER  - 
%0 Journal Article
%A O. Yu. Danilkina
%T On one  nonlocal problem for the heat equation with an integral condition
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 5-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a0/
%G ru
%F VSGTU_2007_1_a0
O. Yu. Danilkina. On one  nonlocal problem for the heat equation with an integral condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2007), pp. 5-9. http://geodesic.mathdoc.fr/item/VSGTU_2007_1_a0/

[1] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodimosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[2] Kozhanov A. I., “O razreshimosti kraevoi s nelokalnym granichnym usloviem dlya lineinykh parabolicheskikh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2004, no. 30, 63–69 | DOI

[3] Pulkina L. S., Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo Ins-t. mat. SO RAN, Novosibirsk, 2005

[4] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, 4-e izd., Nauka, M., 1974 | MR

[5] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[6] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967