A comparative analysis of solutions for stochastic boundary-value problem of the steady-state creep for thick-walled pipes on the basis of the small-parameter method and Monte Carlo simulation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 43 (2006), pp. 116-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VSGTU_2006_43_a16,
     author = {V. N. Isutkina and A. Yu. Margaritov},
     title = {A comparative analysis of solutions for stochastic boundary-value problem of the steady-state creep for thick-walled pipes on the basis of the small-parameter method and {Monte} {Carlo} simulation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {116--123},
     publisher = {mathdoc},
     number = {43},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2006_43_a16/}
}
TY  - JOUR
AU  - V. N. Isutkina
AU  - A. Yu. Margaritov
TI  - A comparative analysis of solutions for stochastic boundary-value problem of the steady-state creep for thick-walled pipes on the basis of the small-parameter method and Monte Carlo simulation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2006
SP  - 116
EP  - 123
IS  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2006_43_a16/
LA  - ru
ID  - VSGTU_2006_43_a16
ER  - 
%0 Journal Article
%A V. N. Isutkina
%A A. Yu. Margaritov
%T A comparative analysis of solutions for stochastic boundary-value problem of the steady-state creep for thick-walled pipes on the basis of the small-parameter method and Monte Carlo simulation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2006
%P 116-123
%N 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2006_43_a16/
%G ru
%F VSGTU_2006_43_a16
V. N. Isutkina; A. Yu. Margaritov. A comparative analysis of solutions for stochastic boundary-value problem of the steady-state creep for thick-walled pipes on the basis of the small-parameter method and Monte Carlo simulation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 43 (2006), pp. 116-123. http://geodesic.mathdoc.fr/item/VSGTU_2006_43_a16/

[1] Popov N. N., Samarin Yu. P., “Issledovanie polei napryazhenii vblizi granitsy stokhasticheski neodnorodnoi poluploskosti pri polzuchesti”, PMTF, 47:1 (1988), 159–164

[2] Kuznetsov V. A., “Polzuchest stokhasticheski neodnorodnykh sred v usloviyakh ploskogo napryazhennogo sostoyaniya”, Nauch. tr.: Matematicheskaya fizika, KPtI, Kuibyshev, 1977, 69–74

[3] Popov N. N., “Nelineinaya stokhasticheskaya zadacha polzuchesti tolstostennoi sfericheskoi obolochki”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 9 (2000), 186–189 | DOI

[4] Popov N. N., Samarin Yu. P., “Prostranstvennaya zadacha statsionarnoi polzuchesti stokhasticheski neodnorodnoi sredy”, PMTF, 2 (1985), 150–155

[5] Kuntashev P. A., Nemirovskii Yu. V., “O skhodimosti metoda vozmuschenii v zadachakh teorii uprugosti”, Izv. AN SSSR. MTT, 1985, no. 3, 75–78 | MR

[6] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Reshenie stokhasticheskoi kraevoi zadachi ustanovivsheisya polzuchesti dlya tolstostennoi truby metodom malogo parametra”, PMTF, 47:1 (2006), 161–171 | Zbl

[7] Radchenko V. P., Popov N. N., “Statisticheskie kharakteristiki polei napryazhenii i deformatsii pri ustanovivsheisya polzuchesti stokhasticheski neodnorodnoi ploskosti”, Izv. vuzov. Mashinostroenie, 2006, no. 2, 3–11

[8] Radchenko V. P., Simonov A. V., Dudkin S. A., “Stokhasticheskii variant odnomernoi teorii polzuchesti i dlitelnoi prochnosti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 12 (2001), 73–84 | DOI

[9] Radchenko V. P., Simonov A. V., Kubyshkina S. N., “Ob odnom podkhode k resheniyu stokhasticheskoi kraevoi zadachi dlya tolstostennoi truby pod deistviem vnutrennego davleniya v usloviyakh reologicheskogo deformirovaniya i razrusheniya materialov”, Mat. modelirovanie i kraevye zadachi, Tr. odinnadtsatoi mezhvuz. konf. Ch. 1, SamGTU, Samara, 2001, 152–156

[10] Radchenko V. P., Simonov A. V., “Prakticheskie aspekty primeneniya metoda statisticheskikh ispytanii k resheniyu kraevykh zadach s uchetom reologicheskikh svoistv materialov”, Obozrenie prikladnoi i promyshlennoi matematiki, 8:1 (2001), 299, Izd-vo TVP, M., Materialy 2 Vseros. simp. po promyshlennoi i prikladnoi matematike

[11] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii, Mashinostroenie-1, M., 2004

[12] Radchenko V. P., Kubyshkina S. N., “Matematicheskaya model reologicheskogo deformirovaniya i razrusheniya tolstostennoi truby”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 6 (1998), 23–35 | DOI