Численный анализ ползучести конструкций при сложном нагружении
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 42 (2006), pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VSGTU_2006_42_a9,
     author = {Ya. M. Klebanov and I. E. Adeyanov and E. I. Ladyagina},
     title = {{\CYRCH}{\cyri}{\cyrs}{\cyrl}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrishrt} {\cyra}{\cyrn}{\cyra}{\cyrl}{\cyri}{\cyrz} {\cyrp}{\cyro}{\cyrl}{\cyrz}{\cyru}{\cyrch}{\cyre}{\cyrs}{\cyrt}{\cyri} {\cyrk}{\cyro}{\cyrn}{\cyrs}{\cyrt}{\cyrr}{\cyru}{\cyrk}{\cyrc}{\cyri}{\cyrishrt} {\cyrp}{\cyrr}{\cyri} {\cyrs}{\cyrl}{\cyro}{\cyrzh}{\cyrn}{\cyro}{\cyrm} {\cyrn}{\cyra}{\cyrg}{\cyrr}{\cyru}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyri}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {75--81},
     publisher = {mathdoc},
     number = {42},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2006_42_a9/}
}
TY  - JOUR
AU  - Ya. M. Klebanov
AU  - I. E. Adeyanov
AU  - E. I. Ladyagina
TI  - Численный анализ ползучести конструкций при сложном нагружении
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2006
SP  - 75
EP  - 81
IS  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2006_42_a9/
LA  - ru
ID  - VSGTU_2006_42_a9
ER  - 
%0 Journal Article
%A Ya. M. Klebanov
%A I. E. Adeyanov
%A E. I. Ladyagina
%T Численный анализ ползучести конструкций при сложном нагружении
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2006
%P 75-81
%N 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2006_42_a9/
%G ru
%F VSGTU_2006_42_a9
Ya. M. Klebanov; I. E. Adeyanov; E. I. Ladyagina. Численный анализ ползучести конструкций при сложном нагружении. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 42 (2006), pp. 75-81. http://geodesic.mathdoc.fr/item/VSGTU_2006_42_a9/

[1] Kawai M., “A comparative study of anisotropic creep theories”, Nuclear Engineering and Design, 152:1–3 (1994), 121–133 | DOI

[2] Kawai M., “Creep hardening rule under multiaxial repeated stress changes”, JSME International Journal. Series A, 38:2 (1995), 201–212

[3] Rubin M. B., Bodner S. R., “An incremental elastic viscoplastic theory indicating a reduced modulus for nonproportional buckling”, Int. J. Solids and Struct., 32:20 (1995), 2967–2987 | DOI | Zbl

[4] Yang X. J., “Constitutive description of temperature-dependent nonproportional cyclic viscoelasticity”, J. Eng. Mater. and Technol., 119:1 (1997), 12–19 | DOI

[5] Klebanov J. M., “Constitutive equations of creep under changing multiaxial stresses”, European Journal of Mechanics A/Solids, 18:3 (1999), 433–442 | DOI | Zbl

[6] Basuroychowdhury I. N., Voyiadjis G. Z., “A multiaxial cyclic plasticity model for non-proportional loading cases”, International Journal of Plasticity, 149 (1998), 855–870 | DOI

[7] Saleeb A. F., Arnold S. M., Castelli M. G. et al., “A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys”, International Journal of Plasticity, 17:10 (2001), 1305–1350 | DOI | Zbl

[8] Chen G. G., Hsu T. R., “A mixed explicit-implicit (EI) algorithm for creep stress analysis”, International Journal for Numerical Methods in Engineering, 26 (1988), 511–524 | DOI | Zbl

[9] Ladeverze P., Nonlinear computational structural mechanics : new approaches and non-incremental methods of calculation, Springer, New York, 1999

[10] Belleneger E., Bussy P., “Phenomenological modeling and numerical simulation of different modes of creep damage evolution”, International Journal of Solids and Structures, 38:4 (2001), 577–604 | DOI

[11] Allix O., Vidal P., “A new multi-solution approach suitable for structural identification problems”, Computer Methods in Appl. Mechanics and Engineering, 191:25 (2002), 2727–2758 | DOI | MR | Zbl

[12] Klebanov Ya. M., “Opredelyayuschie uravneniya polzuchesti pri slozhnom nagruzhenii”, Izvestiya vuzov. Mashinostroenie, 1987, no. 3, 7–11

[13] Klebanov Ya. M., “Model polzuchesti sredy pri slozhnom nagruzhenii, uchityvayuschem nachalnuyu anizotropiyu i vid napryazhennogo sostoyaniya”, Prikladnye problemy prochnosti i plastichnosti, 46 (1990), 102–108

[14] Trampczynski W., Mroz Z., “Anisotropic hardening model and its application to cyclic loading”, International Journal of Plasticity, 8 (1992), 925–949 | DOI

[15] Kachanov L. M., Nekotorye voprosy polzuchesti, Fizmatgiz, M., 1960

[16] Boyle J. T., Spence J., Stress analysis for creep, Butterworths, London, 1983

[17] Samarin Yu. P., Klebanov Ya. M., Obobschennye modeli v teorii polzuchesti konstruktsii, SamGTU, Samara, 1994

[18] Samarin Yu. P., System analysis for creep in materials and structures, World Federation Publishers, Atlanta, 1996 | MR | Zbl