Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 42 (2006), pp. 135-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VSGTU_2006_42_a18,
     author = {A. Kh. Bikulov and A. P. Zubarev and L. V. Kaidalova},
     title = {Hierarchical dynamical model of financial market near the crash point and   $p$-adic mathematical analysis},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {135--140},
     publisher = {mathdoc},
     number = {42},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2006_42_a18/}
}
TY  - JOUR
AU  - A. Kh. Bikulov
AU  - A. P. Zubarev
AU  - L. V. Kaidalova
TI  - Hierarchical dynamical model of financial market near the crash point and   $p$-adic mathematical analysis
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2006
SP  - 135
EP  - 140
IS  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2006_42_a18/
LA  - ru
ID  - VSGTU_2006_42_a18
ER  - 
%0 Journal Article
%A A. Kh. Bikulov
%A A. P. Zubarev
%A L. V. Kaidalova
%T Hierarchical dynamical model of financial market near the crash point and   $p$-adic mathematical analysis
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2006
%P 135-140
%N 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2006_42_a18/
%G ru
%F VSGTU_2006_42_a18
A. Kh. Bikulov; A. P. Zubarev; L. V. Kaidalova. Hierarchical dynamical model of financial market near the crash point and   $p$-adic mathematical analysis. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 42 (2006), pp. 135-140. http://geodesic.mathdoc.fr/item/VSGTU_2006_42_a18/

[1] Sornette D., Kak predskazyvat krakhi finansovykh rynkov: kriticheskie sobytiya v kompleksnykh finansovykh sistemakh, Internet-treiding, M., 2003 | MR

[2] Metzler R., Klafter J., Jortner J., “Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex system”, Proc. Natl. Acad. Sci. USA, 96 (1999), 11085 | DOI

[3] Sornette D., Johansen A., “A hierarchical model of financial crashes”, Physica A, 261 (1998), 581–598 | DOI | MR

[4] Vladimirov B. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | Zbl

[5] Avetisov V. A., Bikulov A. Kh., Kozyrev S. V., Osipov V. A., “$p$-Adic Models of Ultrametric Diffusion Constrained by Hierarchical Energy Landscapes”, J. Phys. A, 35 (2002), 177 | DOI | MR | Zbl

[6] Avetisov V. A., Bikulov A. Kh., Kozyrev S. V., “Application of $p$-adic analysis to models of spontaneous breaking of replica symmetry”, Journal of Physics A, 32 (1999), 8785 | DOI | MR | Zbl

[7] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A, 36 (2003), 4239 | DOI | MR | Zbl