Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2005_34_a25, author = {S. V. Efimova}, title = {A nonlocal problem for a hyperbolic equation degenerating inside a region}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {194--196}, publisher = {mathdoc}, number = {34}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2005_34_a25/} }
TY - JOUR AU - S. V. Efimova TI - A nonlocal problem for a hyperbolic equation degenerating inside a region JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2005 SP - 194 EP - 196 IS - 34 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2005_34_a25/ LA - ru ID - VSGTU_2005_34_a25 ER -
%0 Journal Article %A S. V. Efimova %T A nonlocal problem for a hyperbolic equation degenerating inside a region %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2005 %P 194-196 %N 34 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2005_34_a25/ %G ru %F VSGTU_2005_34_a25
S. V. Efimova. A nonlocal problem for a hyperbolic equation degenerating inside a region. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 34 (2005), pp. 194-196. http://geodesic.mathdoc.fr/item/VSGTU_2005_34_a25/
[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, 1987 | MR
[2] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, Izd-vo KBNTs RAN, Nalchik, 2000
[3] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR
[4] Kilbas A. A., Repin O. A., Saigo M., “Solution in Closed Form of Boundary Value Problem for Degenerate Equation of Hyperbolic Type”, Kyungpook Math. J., 36:2 (1996), 261–273 | MR | Zbl
[5] Kilbas A. A., Repin O. A., Saigo M., “Nonlocal Problem for the Hyperbolic Equation with Fractional Derivatives in the Boundary Condition”, Math. Japan., 33:2 (2003), 1–8 | MR | Zbl
[6] Agmon S., Nirenberg L., Protter M. N., “A maximum principe for a class of hyperbolic equation and applications to mixed elliptic-hyperbolic type”, Communs Pure and Appl. Math., 4:4 (1953), 455–470 | DOI | MR