Numerical solution of linear integral Volterra equations of the third kind
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 30 (2004), pp. 73-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VSGTU_2004_30_a6,
     author = {T. T. Karakeev},
     title = {Numerical solution of linear integral {Volterra} equations of the third kind},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {73--76},
     publisher = {mathdoc},
     number = {30},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a6/}
}
TY  - JOUR
AU  - T. T. Karakeev
TI  - Numerical solution of linear integral Volterra equations of the third kind
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2004
SP  - 73
EP  - 76
IS  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a6/
LA  - ru
ID  - VSGTU_2004_30_a6
ER  - 
%0 Journal Article
%A T. T. Karakeev
%T Numerical solution of linear integral Volterra equations of the third kind
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2004
%P 73-76
%N 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a6/
%G ru
%F VSGTU_2004_30_a6
T. T. Karakeev. Numerical solution of linear integral Volterra equations of the third kind. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 30 (2004), pp. 73-76. http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a6/

[1] Karakeev T. T., “Regulyarizatsiya nelokalnoi granichnoi zadachi dlya psevdoparabolicheskikh uravnenii”, Issled. po integro-differents. uravneniyam, 32, Ilim, Bishkek, 2003, 179–183

[2] Kudryavtsev L. D., Kurs matematicheskogo analiza, T. 2, Vyssh. shkola, M., 1988 | Zbl

[3] Krylov V. I., Bobkov V. V., Monastyrnyi P. I., Vychislitelnye metody, T. II, Nauka, M., 1977 | MR

[4] Apartsin A. S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka. Sibirskaya izdat. firma RAN, Novosibirsk, 1999

[5] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR