Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2004_30_a4, author = {A. I. Kozhanov}, title = {On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {63--69}, publisher = {mathdoc}, number = {30}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a4/} }
TY - JOUR AU - A. I. Kozhanov TI - On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2004 SP - 63 EP - 69 IS - 30 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a4/ LA - ru ID - VSGTU_2004_30_a4 ER -
%0 Journal Article %A A. I. Kozhanov %T On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2004 %P 63-69 %N 30 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a4/ %G ru %F VSGTU_2004_30_a4
A. I. Kozhanov. On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 30 (2004), pp. 63-69. http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a4/
[1] Carlson D. E., Linear Thermoelas Ticity Encyclopedia of Physics, Springer, Berlin, 1972
[2] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21 (1963), 155–160 | MR
[3] Kamynin L. I., “Ob odnoi kraevoi zadache teorii teploprovodimosti s neklassicheskimi granichnymi usloviyami”, Zhurnal vychisl. matem. i mat. fiziki, 4:6 (1964), 1006–1024 | MR | Zbl
[4] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodimosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl
[5] Cannon J. R., Van der Hoek J., “The classical solution of the one-dimensional two-phase Stefan problem with energy specification”, Ann. Math. Pura ed Appl., 130 (1982), 385–398 | DOI | MR | Zbl
[6] Cannon J. R., Van der Hoek J., “The one-phase Stefan problem subject to the spesification of energy”, J. Math. Anal. and Appl., 86:1 (1982), 281–291 | DOI | MR | Zbl
[7] Muravei L. A., Filinovskii A. V., “Ob odnoi nelokalnoi kraevoi zadache dlya parabolicheskogo uravneniya”, Matem. zametki, 54:4 (1993), 98–116 | MR | Zbl
[8] Bouziani A., Benouor N.-E., “Problem mixte avec conditions integrals pour une classe d'equations paraboliques”, C. R. Acad. Sci. Paris. Ser. I, 321:9 (1995), 1177–1182 | MR | Zbl
[9] Ivanchov N. I., “Kraevye zadachi dlya parabolicheskogo uravneniya s integralnymi usloviyami”, Differents. uravneniya, 40:4 (2004), 547–564 | MR | Zbl
[10] Fridman A., “Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions”, Quat. of Appl. Math., 44:3 (1986), 401–407 | MR
[11] Yakubov S. Ya., Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, Elm, Baku, 1995
[12] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl
[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[14] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967