Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2004_30_a11, author = {A. F. Zausaev and A. A. Zausaev and A. G. Ol'khin}, title = {Everhart method accuracy estimation for solving motion equations of large planets on 10 000 years time interval}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {108--113}, publisher = {mathdoc}, number = {30}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a11/} }
TY - JOUR AU - A. F. Zausaev AU - A. A. Zausaev AU - A. G. Ol'khin TI - Everhart method accuracy estimation for solving motion equations of large planets on 10 000 years time interval JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2004 SP - 108 EP - 113 IS - 30 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a11/ LA - ru ID - VSGTU_2004_30_a11 ER -
%0 Journal Article %A A. F. Zausaev %A A. A. Zausaev %A A. G. Ol'khin %T Everhart method accuracy estimation for solving motion equations of large planets on 10 000 years time interval %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2004 %P 108-113 %N 30 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a11/ %G ru %F VSGTU_2004_30_a11
A. F. Zausaev; A. A. Zausaev; A. G. Ol'khin. Everhart method accuracy estimation for solving motion equations of large planets on 10 000 years time interval. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 30 (2004), pp. 108-113. http://geodesic.mathdoc.fr/item/VSGTU_2004_30_a11/
[1] Belyaev N. A., “Evolyutsiya orbity komety Danielya 1909IV za 400 let (1660-2060 gg.). Predvaritelnoe issledovanie”, Byull. ITA, 10:10(157) (1966), 696–710
[2] Chebotarev G. A., Analiticheskie i chislennye metody nebesnoi mekhaniki, Nauka, M.-L., 1965 | MR
[3] Everhart E., “Implicit single methods for integrating orbits”, Celestial Mechanics, 1974, no. 10, 35–55 | DOI | MR | Zbl
[4] Kholl D., Uatt D., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979
[5] Bordovitsina T. V., Sovremennye chislennye metody v zadachakh nebesnoi mekhaniki, Nauka, M., 1984 | MR
[6] Borunov V. P., Ivanov V. A., Mironov S. V., “Sravnenie effektivnosti metodov Felberga, Dormana–Prinsa i Everkharta chislennogo integrirovaniya sistem obyknovennykh differentsialnykh uravnenii”, Primenenie sistem Mathematica i Maple v nauchnykh issledovaniyakh, VTs RAN, M., 2001, 17–62
[7] Abalakin V. K., Aksenov E. P., Grebennikov E. A., Ryabov Yu. A., Spravochnoe rukovodstvo po nebesnoi mekhanike, Nauka, M., 1976