A parallel computational method in steady power-law creep
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 7 (1999), pp. 38-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VSGTU_1999_7_a3,
     author = {Ya. M. Klebanov and A. N. Davydov},
     title = {A parallel computational method in steady power-law creep},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {38--50},
     publisher = {mathdoc},
     number = {7},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a3/}
}
TY  - JOUR
AU  - Ya. M. Klebanov
AU  - A. N. Davydov
TI  - A parallel computational method in steady power-law creep
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 1999
SP  - 38
EP  - 50
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a3/
LA  - ru
ID  - VSGTU_1999_7_a3
ER  - 
%0 Journal Article
%A Ya. M. Klebanov
%A A. N. Davydov
%T A parallel computational method in steady power-law creep
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 1999
%P 38-50
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a3/
%G ru
%F VSGTU_1999_7_a3
Ya. M. Klebanov; A. N. Davydov. A parallel computational method in steady power-law creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 7 (1999), pp. 38-50. http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a3/

[1] Klebanov J. M., “Uniqueness of solutions of non-homogeneous and anisotropic problems of non-linear viscoelasticity”, Int. J. Non-Linear Mech., 31:4 (1996), 419–423 | DOI | MR | Zbl

[2] Klebanov Ya. M., Samarin Yu. P., “Vlozhennye poverkhnosti moschnosti dissipatsii v prostranstve sil i skorostei peremeschenii pri ustanovivsheisya polzuchesti neodnorodnykh i anizotropnykh tel”, Mekhanika tverdogo tela, 1997, no. 6, 121–125 | MR

[3] Boyle J. T., “The theorem of nesting surfaces in steady creep and its application to generalised models and lemit reference stresses”, Res. Mechanica, 1982, no. 4, 275–294 | MR

[4] Malinin H. N., Raschety na polzuchest elementov mashinostroitelnykh konstruktsii, Mashinostroenie, M., 1989

[5] Kachanov L. M., Teoriya polzuchesti, Fizmatgiz, M., 1960

[6] Samarin Yu. P., Klebanov Ya. M., Obobschennye modeli v teorii polzuchesti konstruktsii, Povolzh. otd-nie Inzhenernoi akademii RF. Samar. gos. tekhn. un-t, Samara, 1994

[7] Boyle J. T. Spence J., Stress analysis for creep, Butterworths, London, 1983

[8] Kachanov L. M., Theory of Creep., National Lending Library for Science and Technology, Boston Spa, 1967

[9] Metod obobschennykh elementov v teorii polzuchesti, Promezhutoch. otchet. Rukovod. temy Ya. M. Klebanov, Nauch. kons. Yu. P. Samarin, Samar. gos. tekhn. un-t, Samara, 1994

[10] Ortega D., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[11] Klebanov Ya. M., Davydov A. N., “Mnogourovnevaya dekompozitsiya konstruktsii metodom approksimiruyuschikh obobschennykh modelei”, Chislennye i analiticheskie metody rascheta konstruktsii, Tr. mezhdunar. konf., SamGASA, Samara, 1998, 92–96