Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_1999_7_a3, author = {Ya. M. Klebanov and A. N. Davydov}, title = {A parallel computational method in steady power-law creep}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {38--50}, publisher = {mathdoc}, number = {7}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a3/} }
TY - JOUR AU - Ya. M. Klebanov AU - A. N. Davydov TI - A parallel computational method in steady power-law creep JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 1999 SP - 38 EP - 50 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a3/ LA - ru ID - VSGTU_1999_7_a3 ER -
%0 Journal Article %A Ya. M. Klebanov %A A. N. Davydov %T A parallel computational method in steady power-law creep %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 1999 %P 38-50 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a3/ %G ru %F VSGTU_1999_7_a3
Ya. M. Klebanov; A. N. Davydov. A parallel computational method in steady power-law creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 7 (1999), pp. 38-50. http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a3/
[1] Klebanov J. M., “Uniqueness of solutions of non-homogeneous and anisotropic problems of non-linear viscoelasticity”, Int. J. Non-Linear Mech., 31:4 (1996), 419–423 | DOI | MR | Zbl
[2] Klebanov Ya. M., Samarin Yu. P., “Vlozhennye poverkhnosti moschnosti dissipatsii v prostranstve sil i skorostei peremeschenii pri ustanovivsheisya polzuchesti neodnorodnykh i anizotropnykh tel”, Mekhanika tverdogo tela, 1997, no. 6, 121–125 | MR
[3] Boyle J. T., “The theorem of nesting surfaces in steady creep and its application to generalised models and lemit reference stresses”, Res. Mechanica, 1982, no. 4, 275–294 | MR
[4] Malinin H. N., Raschety na polzuchest elementov mashinostroitelnykh konstruktsii, Mashinostroenie, M., 1989
[5] Kachanov L. M., Teoriya polzuchesti, Fizmatgiz, M., 1960
[6] Samarin Yu. P., Klebanov Ya. M., Obobschennye modeli v teorii polzuchesti konstruktsii, Povolzh. otd-nie Inzhenernoi akademii RF. Samar. gos. tekhn. un-t, Samara, 1994
[7] Boyle J. T. Spence J., Stress analysis for creep, Butterworths, London, 1983
[8] Kachanov L. M., Theory of Creep., National Lending Library for Science and Technology, Boston Spa, 1967
[9] Metod obobschennykh elementov v teorii polzuchesti, Promezhutoch. otchet. Rukovod. temy Ya. M. Klebanov, Nauch. kons. Yu. P. Samarin, Samar. gos. tekhn. un-t, Samara, 1994
[10] Ortega D., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR
[11] Klebanov Ya. M., Davydov A. N., “Mnogourovnevaya dekompozitsiya konstruktsii metodom approksimiruyuschikh obobschennykh modelei”, Chislennye i analiticheskie metody rascheta konstruktsii, Tr. mezhdunar. konf., SamGASA, Samara, 1998, 92–96