Research of a problem of existence of travelling waves in the system of Navier-Stokes equations with use methods of the theory of singular perturbation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 7 (1999), pp. 5-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VSGTU_1999_7_a0,
     author = {A. I. Gol'dshtein},
     title = {Research of a problem of existence of travelling waves in the system of {Navier-Stokes} equations with use methods of the theory of singular perturbation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {5--18},
     publisher = {mathdoc},
     number = {7},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a0/}
}
TY  - JOUR
AU  - A. I. Gol'dshtein
TI  - Research of a problem of existence of travelling waves in the system of Navier-Stokes equations with use methods of the theory of singular perturbation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 1999
SP  - 5
EP  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a0/
LA  - ru
ID  - VSGTU_1999_7_a0
ER  - 
%0 Journal Article
%A A. I. Gol'dshtein
%T Research of a problem of existence of travelling waves in the system of Navier-Stokes equations with use methods of the theory of singular perturbation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 1999
%P 5-18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a0/
%G ru
%F VSGTU_1999_7_a0
A. I. Gol'dshtein. Research of a problem of existence of travelling waves in the system of Navier-Stokes equations with use methods of the theory of singular perturbation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 7 (1999), pp. 5-18. http://geodesic.mathdoc.fr/item/VSGTU_1999_7_a0/

[1] Courant R., Friedrichs K. O., Supersonic Flow and Shock waves, Appl. Math. Sci., 21, Springer, New York, 1948 | MR

[2] Fenichel N., “Geometric singular perturbation theory”, J. Differential Equations, 31 (1979), 53–98 | DOI | MR | Zbl

[3] Gilbarg D., “The existence and limit behavior of the one-dimensional shock layer”, Amer. J. Math., 73 (1951), 256–274 | DOI | MR | Zbl

[4] Smoller J., Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss., 258, Springer, New York-Berlin, 1983 | DOI | MR | Zbl

[5] Szmolyan P., “Transversal heteroclinic and homoclinic orbits in singular perturbation problems”, J. Differential Equations, 92 (1991), 252–281 | DOI | MR | Zbl

[6] Wagner D. H., “The existence and behavior of viscous structure for plane detonation waves”, SIAM J. Math. Anal., 20 (1989), 1035–1054 | DOI | MR | Zbl

[7] Wagner D., Detonation waves and deflagration waves in the one-dimensional ZND-model for high Mach number combustions, IMA-preprint 498, Institute for Mathematics and its University of Minnesota, Minneapolis, MN, 1989 | MR

[8] Williams F. A., Combustion Theory, Benjamin-Cummings, Menlo Park, OA, 1985