About Chebyshev properties of semi-infinite optimization problem
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 6 (1998), pp. 86-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VSGTU_1998_6_a10,
     author = {\`E. Ya. Rapoport},
     title = {About {Chebyshev} properties of semi-infinite optimization problem},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {86--110},
     publisher = {mathdoc},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_1998_6_a10/}
}
TY  - JOUR
AU  - È. Ya. Rapoport
TI  - About Chebyshev properties of semi-infinite optimization problem
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 1998
SP  - 86
EP  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_1998_6_a10/
LA  - ru
ID  - VSGTU_1998_6_a10
ER  - 
%0 Journal Article
%A È. Ya. Rapoport
%T About Chebyshev properties of semi-infinite optimization problem
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 1998
%P 86-110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_1998_6_a10/
%G ru
%F VSGTU_1998_6_a10
È. Ya. Rapoport. About Chebyshev properties of semi-infinite optimization problem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 6 (1998), pp. 86-110. http://geodesic.mathdoc.fr/item/VSGTU_1998_6_a10/

[1] Pshenichnyi B. N., Neobkhodimye usloviya ekstremuma, Nauka, M., 1969

[2] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972

[3] Semi-Infinite Programming and Application, Lecture notes in Economics and Mathematical Systems, 215, eds. A. V. Fiacco and K. O. Kortanek, Springer-Verlag, New York, 1983 | MR

[4] Polak E., Meini D. K., Stimler D. M., “Primenenie metodov polubeskonechnoi optimizatsii dlya sinteza sistem avtomaticheskogo upravleniya: Obzor”, TIEER, 72:12 (1984), 132–152

[5] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988

[6] Berezin I. S., Zhidkov N. P., Metody vychislenii, T. 1, Nauka, M., 1966

[7] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977

[8] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, LGU, L., 1977

[9] Kollatts L., Krabs V., Teoriya priblizhenii. Chebyshevskie priblizheniya, Nauka, M., 1978

[10] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976

[11] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983

[12] Chebyshev P. L., “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, Izbr. tr., AN SSSR, M., 1955, 462–578

[13] Bernshtein S. N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, ONTI, M.–L., 1937

[14] Remez E. Ya., Osnovy chislennykh metodov chebyshevskogo priblizheniya, Naukova dumka, Kiev, 1969

[15] Malozemov V. N., “O vyravnivanii maksimumov”, Zhurn. vychislit. matemat. i mat. fiziki, 16:3 (1976), 781–784 | Zbl

[16] Beiko I. V., Bublik B. N., Zinko P. N., Metody i algoritmy resheniya zadach optimizatsii, Vischa shkola, Kiev, 1983

[17] Rapoport E. Ya., “Alternansnye svoistva optimalnykh reshenii i vychislitelnye algoritmy v zadachakh polubeskonechnoi optimizatsii upravlyaemykh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 1996, no. 4, 84–95

[18] Malozemov V. N., Pevnyi A. B., “Alternansnye svoistva reshenii nelineinykh minimaksnykh zadach”, Dokl. AN SSSR, 212:1 (1973), 37–39 | MR | Zbl

[19] Daugavet V. A., Malozemov V. N., “Alternansnye svoistva reshenii nelineinykh minimaksnykh zadach s nevypuklymi ogranicheniyami”, Dokl. AN SSSR, 225:2 (1975), 253–255 | Zbl

[20] Daugavet V. A., “Alternansnye svoistva reshenii nelineinykh minimaksnykh zadach s nelineinymi ogranicheniyami”, Zhurn. vychislit. matemat. i mat. fiziki, 16:3 (1976), 784–788 | Zbl

[21] Voprosy teorii i elementy programmnogo obespecheniya minimaksnykh zadach, eds. V. F. Demyanov i V. N. Malozemov, LGU, L., 1977

[22] Rapoport E. Ya., “Chebyshevskie priblizheniya v zadachakh parametricheskoi optimizatsii upravlyaemykh protsessov. I. Neobkhodimye usloviya optimalnosti i vychislitelnye algoritmy”, A i T, 1992, no. 2, 60–67 | MR

[23] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980

[24] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984

[25] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[26] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979

[27] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vyssh. shk., M., 1982

[28] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981

[29] Rapoport E. Ya., “Chebyshevskie priblizheniya v zadachakh parametricheskoi optimizatsii upravlyaemykh protsessov. II. Alternansnye svoisva optimalnykh reshenii”, A i T, 1992, no. 3, 59–64 | MR

[30] Rapoport E. Ya., Optimizatsiya protsessov induktsionnogo nagreva metalla, Metallurgiya, M., 1993 | MR

[31] Rapoport E. Ya., “Parametricheskaya optimizatsiya sistem avtomaticheskogo upravleniya po ravnomerno-chastotnym kriteriyam”, Vestn. Samar. gos. tekhn. un-ta. Ser. “Tekhnicheskie nauki”, 5, 1998, 13–27