@article{VNGU_2016_16_4_a4,
author = {O. A. Korobov},
title = {On groups with an almost regular and almost perfect involution},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {38--45},
year = {2016},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a4/}
}
O. A. Korobov. On groups with an almost regular and almost perfect involution. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 38-45. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a4/
[1] V. P. Shunkov, “On periodic groups with an almost regular involution”, Algebra Logic, 11:4 (1972), 260–272 | DOI
[2] V. V. Belyaev, “Groups with an almost-regular involution”, Algebra Logic, 26:5 (1987), 315–317 | DOI
[3] A. I. Sozutov, “Groups with an almost regular involution”, Algebra Logic, 46:3 (2007), 195–199 | DOI
[4] A. I. Sozutov, N. M. Suchkov, N. G. Suchkova, Infinite groups with involutions, Siberian Federal University, Krasnoyarsk, 2011 (in Russian)
[5] O. A. Korobov, “Groups with small centralizer of an almost regular involution”, Proc. of the $51^\text{st}$ Int. Sci. Student Conf., Novosibirsk State University, Novosibirsk, 2013, 64–65 (in Russian)
[6] O. A. Korobov, “Groups with small centralizer of an almost regular involution”, Proc. of the Int. Conf. Dedicated to the Meroty of V. P. Shunkov, Siberian Federal University, Krasnoyarsk, 2013, 192 (in Russian)
[7] Kargapolov M. I., Merzljakov Ju. I., Fundamentals of the Theory of Groups, Springer, N. Y., 1979
[8] Kegel O. H., Wehrfritz B. A. F., Locally Finite Groups, North-Holland, Amsterdam, 1973
[9] Hartley B., Meixner Th., “Periodic Groups in which the Centralizer of an Involution Has Bounded Order”, J. Algebra, 64:1 (1980), 285–291 | DOI
[10] Isaacs I. H., Character Theory of Finite Groups, AMS Chelser Publishing, N.Y., 2006
[11] Yu. M. Gorchakov, Groups with Finite Classes of Conjugate Elements, Nauka, M., 1978 (in Russian)