Groupoids with Primitive Normal and Additive Theories
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 107-116
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we investigate some groupoids with primitive normal and additive theories. We prove that the theory of a semigroup is primitive normal iff this semigroup is an inflation of rectangular band of the abelian groups and the product of its idempotents is an idempotent; the theory of semigroups is additive iff this semigroup is an abelian group. We show that for the theory of a finite quasigroup the notions of primitive normality, additivity and abelianty are equivalent. We prove that the theory of a groupoid with an identity is primitive normal iff this theory is additive, which is equivalent to a groupoid to be an abelian group.
Keywords:
primitive normal theory, additive theory, semigroup
Mots-clés : quasigroup.
Mots-clés : quasigroup.
@article{VNGU_2011_11_4_a9,
author = {N. V. Trikashnaya},
title = {Groupoids with {Primitive} {Normal} and {Additive} {Theories}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {107--116},
year = {2011},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a9/}
}
N. V. Trikashnaya. Groupoids with Primitive Normal and Additive Theories. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 107-116. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a9/
[1] Palyutin E. A., “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl
[2] Stepanova A. A., Trikashnaya N. V., “Abelevy i gamiltonovy gruppoidy”, Fundamentalnaya i prikladnaya matematika, 15:7 (2009), 165–177 | MR
[3] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, Mir, M., 1972 | Zbl
[4] Warne R. J., “Semigroups Obeying the Term Conditions”, Algebra Universalis, 1994, no. 31, 113–123 | DOI | MR | Zbl
[5] Stepanova A. A., Kategorichnye i polnye khornovy teorii gruppoidov, Dis. ... kand. fiz.-mat. nauk, Vladivostok, 1987
[6] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR