Groupoids with Primitive Normal and Additive Theories
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 107-116

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we investigate some groupoids with primitive normal and additive theories. We prove that the theory of a semigroup is primitive normal iff this semigroup is an inflation of rectangular band of the abelian groups and the product of its idempotents is an idempotent; the theory of semigroups is additive iff this semigroup is an abelian group. We show that for the theory of a finite quasigroup the notions of primitive normality, additivity and abelianty are equivalent. We prove that the theory of a groupoid with an identity is primitive normal iff this theory is additive, which is equivalent to a groupoid to be an abelian group.
Keywords: primitive normal theory, additive theory, semigroup
Mots-clés : quasigroup.
@article{VNGU_2011_11_4_a9,
     author = {N. V. Trikashnaya},
     title = {Groupoids with {Primitive} {Normal} and {Additive} {Theories}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a9/}
}
TY  - JOUR
AU  - N. V. Trikashnaya
TI  - Groupoids with Primitive Normal and Additive Theories
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 107
EP  - 116
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a9/
LA  - ru
ID  - VNGU_2011_11_4_a9
ER  - 
%0 Journal Article
%A N. V. Trikashnaya
%T Groupoids with Primitive Normal and Additive Theories
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 107-116
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a9/
%G ru
%F VNGU_2011_11_4_a9
N. V. Trikashnaya. Groupoids with Primitive Normal and Additive Theories. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 107-116. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a9/