New Estimations of Fixation Time Mean for Populations with Fixed Size
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 94-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The population consisting from $N$ of particles is considered, each of which attributes some type. All particles during the integer moments of time perish and generate a random number of particles of the same type, as the parent. Thus population keeps the size $N$, and the casual vectors setting number of posterity from each particle, have the distributions independent concerning any shifts of coordinates. Justice of the top estimation based on decomposition of function $v (k)$ under the Taylor formula to within 5 moments is proved. Conditions at which the new estimation improves earlier known are resulted.
Mots-clés : Markov chains, evolution of populations, fixation time
Keywords: most recent common ancestor, imitation modeling.
@article{VNGU_2011_11_4_a8,
     author = {A. K. Slizhevsky},
     title = {New {Estimations} of {Fixation} {Time} {Mean} for {Populations} with {Fixed} {Size}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {94--106},
     year = {2011},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a8/}
}
TY  - JOUR
AU  - A. K. Slizhevsky
TI  - New Estimations of Fixation Time Mean for Populations with Fixed Size
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 94
EP  - 106
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a8/
LA  - ru
ID  - VNGU_2011_11_4_a8
ER  - 
%0 Journal Article
%A A. K. Slizhevsky
%T New Estimations of Fixation Time Mean for Populations with Fixed Size
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 94-106
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a8/
%G ru
%F VNGU_2011_11_4_a8
A. K. Slizhevsky. New Estimations of Fixation Time Mean for Populations with Fixed Size. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 94-106. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a8/

[1] Cannings R., “The Latent Roots of Certain Markov Chains Arising in Genetics: A New Approach. I: Haploid Models”, Adv. Appl. Prob., 6 (1974), 260–294 | DOI | MR

[2] Cannings R., “The Latent Roots of Certain Markov Chains Arising in Genetics: A New Approach. II: Further Haploid Models”, Adv. Appl. Prob., 7 (1975), 264–282 | DOI | MR | Zbl

[3] Durrett R., Probability Models for DNA Sequence Evolution, Springer-Verlag, Berlin, 2002 | MR

[4] Haccou P., Jagers P., Vatutin V. A., Branching Processes: Variation, Growth, and Extinction of Populations, Cambridge University Press, Cambridge, N.Y., 2004

[5] Klokov S. A., Topchii V. A., “Otsenki srednego vremeni fiksatsii v populyatsiyakh postoyannogo ob'ema”, Sib. mat. zhurn., 47:6 (2006), 1275–1288 | MR | Zbl

[6] Klokov S. A., Topchii V. A., “O vremeni vytesneniya odnim iz tipov chastits vsekh ostalnykh v populyatsii fiksirovannoi chislennosti”, Mat. tr. IM SO RAN, 8:2 (2005), 41–56 | MR

[7] Klokov S. A., Topchii V. A., “Otsenki srednikh vremen dostizheniya odnorodnosti v populyatsiyakh fiksirovannogo ob'ema”, Matematika, informatika, upravlenie, Plenarnye doklady IV Vseros. konf. (Irkutsk, 2005)