New Estimations of Fixation Time Mean for Populations with Fixed Size
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 94-106
Voir la notice de l'article provenant de la source Math-Net.Ru
The population consisting from $N$ of particles is considered, each of which attributes some type. All particles during the integer moments of time perish and generate a random number of particles of the same type, as the parent. Thus population keeps the size $N$, and the casual vectors setting number of posterity from each particle, have the distributions independent concerning any shifts of coordinates. Justice of the top estimation based on decomposition of function $v (k)$ under the Taylor formula to within 5 moments is proved. Conditions at which the new estimation improves earlier known are resulted.
Mots-clés :
Markov chains, evolution of populations, fixation time
Keywords: most recent common ancestor, imitation modeling.
Keywords: most recent common ancestor, imitation modeling.
@article{VNGU_2011_11_4_a8,
author = {A. K. Slizhevsky},
title = {New {Estimations} of {Fixation} {Time} {Mean} for {Populations} with {Fixed} {Size}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {94--106},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a8/}
}
TY - JOUR AU - A. K. Slizhevsky TI - New Estimations of Fixation Time Mean for Populations with Fixed Size JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 94 EP - 106 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a8/ LA - ru ID - VNGU_2011_11_4_a8 ER -
A. K. Slizhevsky. New Estimations of Fixation Time Mean for Populations with Fixed Size. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 94-106. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a8/