On the Nonlinear Operators Having Jacoby Matrix Commuting with a Ring of the Constant Matrix
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 108-118

Voir la notice de l'article provenant de la source Math-Net.Ru

The criterion of existence of nonlinear operator $\mathbf{u}:C^m\rightarrow C^m \left(m\ge2\right)$ for which it's Jacoby matrix commutes with every constant complex matrix from any given ring $Q$ is obtained. The main theorem says that such operator exists if and only if a ring $Q$ has at least one $\left(r,l\right)$-pair.
Keywords: criterion of existence of nonlinear operator, Jacoby matrix commuting with every constant complex matrix from any given ring, $\boldsymbol{(r,l)}$-pair, Schur lemma.
Mots-clés : equivalence
@article{VNGU_2010_10_1_a8,
     author = {Yu. A. Chirkunov},
     title = {On the {Nonlinear} {Operators} {Having} {Jacoby} {Matrix} {Commuting} with a {Ring} of the {Constant} {Matrix}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {108--118},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a8/}
}
TY  - JOUR
AU  - Yu. A. Chirkunov
TI  - On the Nonlinear Operators Having Jacoby Matrix Commuting with a Ring of the Constant Matrix
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 108
EP  - 118
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a8/
LA  - ru
ID  - VNGU_2010_10_1_a8
ER  - 
%0 Journal Article
%A Yu. A. Chirkunov
%T On the Nonlinear Operators Having Jacoby Matrix Commuting with a Ring of the Constant Matrix
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 108-118
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a8/
%G ru
%F VNGU_2010_10_1_a8
Yu. A. Chirkunov. On the Nonlinear Operators Having Jacoby Matrix Commuting with a Ring of the Constant Matrix. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 108-118. http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a8/