On the Nonlinear Operators Having Jacoby Matrix Commuting with a Ring of the Constant Matrix
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 108-118
Cet article a éte moissonné depuis la source Math-Net.Ru
The criterion of existence of nonlinear operator $\mathbf{u}:C^m\rightarrow C^m \left(m\ge2\right)$ for which it's Jacoby matrix commutes with every constant complex matrix from any given ring $Q$ is obtained. The main theorem says that such operator exists if and only if a ring $Q$ has at least one $\left(r,l\right)$-pair.
Keywords:
criterion of existence of nonlinear operator, Jacoby matrix commuting with every constant complex matrix from any given ring, $\boldsymbol{(r,l)}$-pair, Schur lemma.
Mots-clés : equivalence
Mots-clés : equivalence
@article{VNGU_2010_10_1_a8,
author = {Yu. A. Chirkunov},
title = {On the {Nonlinear} {Operators} {Having} {Jacoby} {Matrix} {Commuting} with a {Ring} of the {Constant} {Matrix}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {108--118},
year = {2010},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a8/}
}
TY - JOUR AU - Yu. A. Chirkunov TI - On the Nonlinear Operators Having Jacoby Matrix Commuting with a Ring of the Constant Matrix JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2010 SP - 108 EP - 118 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a8/ LA - ru ID - VNGU_2010_10_1_a8 ER -
Yu. A. Chirkunov. On the Nonlinear Operators Having Jacoby Matrix Commuting with a Ring of the Constant Matrix. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 108-118. http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a8/
[1] Chirkunov Yu. A., “Usloviya lineinoi avtonomnosti osnovnoi algebry Li sistemy lineinykh differentsialnykh uravnenii”, Dokl. AN, 426:5 (2009), 605–607 | MR | Zbl
[2] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR
[3] Zhelobenko D. P., Shtern A. I., Predstavleniya grupp Li, Nauka, M., 1983 | MR
[4] Veil G., Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR