On the normal solvability of elliptic equations in the Holder space functions on plane
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniformly elliptic equation $$ Lw\equiv w_{\overline{z}}+q_1(z)w_z+q_2(z)\overline{w}_{\overline{z}}+a(z)w+b(z)\overline{w}=f(z) $$ with coefficients in the Holder space functions $C_\alpha$ on plane are considered. The equivalency following assertions is established: a) the operator $L: C_\alpha^1\to C_\alpha$ is $n$-normal; b) the a priori estimate $$ ||w||_{1,\alpha}\leqslant M(||Lw||_\alpha+\max_{|z|\leqslant1}|w(z)|), $$ is valid; c) a corresponding limit equations has only the zero solution in $C^1_\alpha$.
@article{VNGU_2006_6_1_a0,
     author = {S. Baizaev and E. Muhamadiev},
     title = {On the normal solvability of elliptic equations in the {Holder} space functions on plane},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/}
}
TY  - JOUR
AU  - S. Baizaev
AU  - E. Muhamadiev
TI  - On the normal solvability of elliptic equations in the Holder space functions on plane
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 3
EP  - 13
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/
LA  - ru
ID  - VNGU_2006_6_1_a0
ER  - 
%0 Journal Article
%A S. Baizaev
%A E. Muhamadiev
%T On the normal solvability of elliptic equations in the Holder space functions on plane
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 3-13
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/
%G ru
%F VNGU_2006_6_1_a0
S. Baizaev; E. Muhamadiev. On the normal solvability of elliptic equations in the Holder space functions on plane. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/