On the normal solvability of elliptic equations in the Holder space functions on plane
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The uniformly elliptic equation $$ Lw\equiv w_{\overline{z}}+q_1(z)w_z+q_2(z)\overline{w}_{\overline{z}}+a(z)w+b(z)\overline{w}=f(z) $$ with coefficients in the Holder space functions $C_\alpha$ on plane are considered. The equivalency following assertions is established: a) the operator $L: C_\alpha^1\to C_\alpha$ is $n$-normal; b) the a priori estimate $$ ||w||_{1,\alpha}\leqslant M(||Lw||_\alpha+\max_{|z|\leqslant1}|w(z)|), $$ is valid; c) a corresponding limit equations has only the zero solution in $C^1_\alpha$.
@article{VNGU_2006_6_1_a0,
     author = {S. Baizaev and E. Muhamadiev},
     title = {On the normal solvability of elliptic equations in the {Holder} space functions on plane},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--13},
     year = {2006},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/}
}
TY  - JOUR
AU  - S. Baizaev
AU  - E. Muhamadiev
TI  - On the normal solvability of elliptic equations in the Holder space functions on plane
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2006
SP  - 3
EP  - 13
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/
LA  - ru
ID  - VNGU_2006_6_1_a0
ER  - 
%0 Journal Article
%A S. Baizaev
%A E. Muhamadiev
%T On the normal solvability of elliptic equations in the Holder space functions on plane
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2006
%P 3-13
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/
%G ru
%F VNGU_2006_6_1_a0
S. Baizaev; E. Muhamadiev. On the normal solvability of elliptic equations in the Holder space functions on plane. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/

[1] I. N. Vekua, Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[2] L. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[3] L. G. Mikhailov, Novyi klass osobykh integralnykh uravnenii i ego primenenie k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Dushanbe, 1963

[4] B. Boyarskii, Issledovaniya po uravneniyam ellipticheskogo tipa na ploskosti i granichnym zadacham teorii funktsii, Doktorskaya dissertatsiya, MIAN, 1960

[5] E. Mukhamadiev, S. Baizaev, “K teorii ogranichennykh reshenii obobschennoi sistemy Koshi–Rimana”, DAN SSSR, 287:2 (1986), 280–283 | MR | Zbl

[6] S. Baizaev, E. Mukhamadiev, “Ob indekse ellipticheskikh operatorov pervogo poryadka na ploskosti”, Differentsialnye uravneniya, 28:5 (1992), 818–827 | MR | Zbl

[7] S. Baizaev, Ellipticheskie sistemy s ogranichennymi koeffitsientami na ploskosti, Preprint No 41, NII diskretnoi matematiki i informatiki, Novosibirsk, 1999

[8] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[9] S. Baizaev, Issledovaniya po teorii ogranichennykh reshenii ellipticheskikh sistem na ploskosti, Doktorskaya dissertatsiya, Novosibirsk, 1999