On the normal solvability of elliptic equations in the Holder space functions on plane
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 3-13
Voir la notice de l'article provenant de la source Math-Net.Ru
The uniformly elliptic equation
$$
Lw\equiv w_{\overline{z}}+q_1(z)w_z+q_2(z)\overline{w}_{\overline{z}}+a(z)w+b(z)\overline{w}=f(z)
$$
with coefficients in the Holder space functions $C_\alpha$ on plane are considered. The equivalency
following assertions is established: a) the operator $L: C_\alpha^1\to C_\alpha$ is $n$-normal; b) the a priori
estimate
$$
||w||_{1,\alpha}\leqslant M(||Lw||_\alpha+\max_{|z|\leqslant1}|w(z)|),
$$
is valid; c) a corresponding limit equations has only the zero solution in $C^1_\alpha$.
@article{VNGU_2006_6_1_a0,
author = {S. Baizaev and E. Muhamadiev},
title = {On the normal solvability of elliptic equations in the {Holder} space functions on plane},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {3--13},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/}
}
TY - JOUR AU - S. Baizaev AU - E. Muhamadiev TI - On the normal solvability of elliptic equations in the Holder space functions on plane JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2006 SP - 3 EP - 13 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/ LA - ru ID - VNGU_2006_6_1_a0 ER -
%0 Journal Article %A S. Baizaev %A E. Muhamadiev %T On the normal solvability of elliptic equations in the Holder space functions on plane %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2006 %P 3-13 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/ %G ru %F VNGU_2006_6_1_a0
S. Baizaev; E. Muhamadiev. On the normal solvability of elliptic equations in the Holder space functions on plane. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 6 (2006) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/VNGU_2006_6_1_a0/