Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{VM_2013_15_1_a2, author = {Shunsuke Nakamura and Ryo Hanafusa and Wataru Ogasa and Takeru Kitagawa and Ryohei Miyadera}, title = {Chocolate games that satisfy the inequality $y\leq \lfloor \frac{z}{k} \rfloor$ for $k=1,2$ and {Grundy} numbers}, journal = {Visual Mathematics}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VM_2013_15_1_a2/} }
TY - JOUR AU - Shunsuke Nakamura AU - Ryo Hanafusa AU - Wataru Ogasa AU - Takeru Kitagawa AU - Ryohei Miyadera TI - Chocolate games that satisfy the inequality $y\leq \lfloor \frac{z}{k} \rfloor$ for $k=1,2$ and Grundy numbers JO - Visual Mathematics PY - 2013 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VM_2013_15_1_a2/ LA - en ID - VM_2013_15_1_a2 ER -
%0 Journal Article %A Shunsuke Nakamura %A Ryo Hanafusa %A Wataru Ogasa %A Takeru Kitagawa %A Ryohei Miyadera %T Chocolate games that satisfy the inequality $y\leq \lfloor \frac{z}{k} \rfloor$ for $k=1,2$ and Grundy numbers %J Visual Mathematics %D 2013 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VM_2013_15_1_a2/ %G en %F VM_2013_15_1_a2
Shunsuke Nakamura; Ryo Hanafusa; Wataru Ogasa; Takeru Kitagawa; Ryohei Miyadera. Chocolate games that satisfy the inequality $y\leq \lfloor \frac{z}{k} \rfloor$ for $k=1,2$ and Grundy numbers. Visual Mathematics, Tome 15 (2013) no. 1. http://geodesic.mathdoc.fr/item/VM_2013_15_1_a2/