African dance rattle capsules from Cameroon to Madagascar, from Somalia to Mozambique: Plaiting a symmetric, nonahedral shape
Visual Mathematics, Tome 14 (2012) no. 3
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

The following paper presents examples of dance rattles from several parts of Africa: from Cameroon in the West-Central Africa, from Somalia and Kenya in Eastern Africa, and from Madagascar and Mozambique in Southern Africa. The capsules of these rattles are plaited in a similar way. They display a nonahedral shape (nine faces) and each capsule is made from only one strip of a leaf. A plaited capsule can be understood as an alternating knot, precisely as knot 940 in the international knot table. The paper shows how to weave a strip of cardboard paper to produce the nonahedral shape.
Classification : 20H15
@article{VM_2012_14_3_a2,
     author = {Paulus Gerdes},
     title = {African dance rattle capsules from {Cameroon} to {Madagascar,} from {Somalia} to {Mozambique:} {Plaiting} a symmetric, nonahedral shape},
     journal = {Visual Mathematics},
     year = {2012},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2012_14_3_a2/}
}
TY  - JOUR
AU  - Paulus Gerdes
TI  - African dance rattle capsules from Cameroon to Madagascar, from Somalia to Mozambique: Plaiting a symmetric, nonahedral shape
JO  - Visual Mathematics
PY  - 2012
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VM_2012_14_3_a2/
LA  - en
ID  - VM_2012_14_3_a2
ER  - 
%0 Journal Article
%A Paulus Gerdes
%T African dance rattle capsules from Cameroon to Madagascar, from Somalia to Mozambique: Plaiting a symmetric, nonahedral shape
%J Visual Mathematics
%D 2012
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VM_2012_14_3_a2/
%G en
%F VM_2012_14_3_a2
Paulus Gerdes. African dance rattle capsules from Cameroon to Madagascar, from Somalia to Mozambique: Plaiting a symmetric, nonahedral shape. Visual Mathematics, Tome 14 (2012) no. 3. http://geodesic.mathdoc.fr/item/VM_2012_14_3_a2/