Dividing the Sides of a Triangle in Proportional Parts
The paper shows that a triangle is dissected into sets of three polygons of equal area and possibly a central polygon when its sides are divided in proportional parts. First the division of the sides in three proportional parts will be considered, thereafter the more general case.
Classification : 51M04
@article{VM_2003_5_2_a0,
     author = {Paulus Gerdes},
     title = {Dividing the {Sides} of a {Triangle} in {Proportional} {Parts}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2003_5_2_a0/}
}
TY  - JOUR
AU  - Paulus Gerdes
TI  - Dividing the Sides of a Triangle in Proportional Parts
JO  - Visual Mathematics
PY  - 2003
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2003_5_2_a0/
LA  - en
ID  - VM_2003_5_2_a0
ER  - 
%0 Journal Article
%A Paulus Gerdes
%T Dividing the Sides of a Triangle in Proportional Parts
%J Visual Mathematics
%D 2003
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2003_5_2_a0/
%G en
%F VM_2003_5_2_a0
Paulus Gerdes. Dividing the Sides of a Triangle in Proportional Parts. Visual Mathematics, Tome 5 (2003) no. 2. http://geodesic.mathdoc.fr/item/VM_2003_5_2_a0/