Methods of Perfect Coloring
This paper presents two methods of coloring monochromatic plane and periodic mosaics by means of which color may be distributed making use of the symmetry group associated to the monochromatic mosaic and its subgroups. The main result is the Theorem where it is proved that, when the subgroup used for the two colorings is normal, the coloring result obtained is independent from the method used.
Classification : 20H15
@article{VM_2000_2_1_a3,
     author = {R. P\'erez-G\'omez and Ceferino Ruiz},
     title = {Methods of {Perfect} {Coloring}},
     journal = {Visual Mathematics},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_2000_2_1_a3/}
}
TY  - JOUR
AU  - R. Pérez-Gómez
AU  - Ceferino Ruiz
TI  - Methods of Perfect Coloring
JO  - Visual Mathematics
PY  - 2000
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VM_2000_2_1_a3/
LA  - en
ID  - VM_2000_2_1_a3
ER  - 
%0 Journal Article
%A R. Pérez-Gómez
%A Ceferino Ruiz
%T Methods of Perfect Coloring
%J Visual Mathematics
%D 2000
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VM_2000_2_1_a3/
%G en
%F VM_2000_2_1_a3
R. Pérez-Gómez; Ceferino Ruiz. Methods of Perfect Coloring. Visual Mathematics, Tome 2 (2000) no. 1. http://geodesic.mathdoc.fr/item/VM_2000_2_1_a3/