Chains, Flowers, Rings and Peanuts: Graphical Geodesic Lines and Their Application to Penrose Tiling
Visual Mathematics, Tome 1 (1999) no. 4 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

The new concept of a graphical geodesic is introduced to characterize an arbitrary two-dimensional network whose meshes are all triangles. Although locally straight, a geodesic line globally meanders and sometimes intersects with itself. Furthermore, it may be open or closed. When the method is applied to the triangulated Penrose tiling, geodesics fall into four classes: chains, flowers, rings and peanuts. The analysis shows that a Penrose tiling has strong local fluctuations of curvature which average out over a small region.
Classification : 52C23
@article{VM_1999_1_4_a5,
     author = {T. Ogawa and R. Collins},
     title = {Chains, {Flowers,} {Rings} and {Peanuts:} {Graphical} {Geodesic} {Lines} and {Their} {Application} to {Penrose} {Tiling}},
     journal = {Visual Mathematics},
     year = {1999},
     volume = {1},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VM_1999_1_4_a5/}
}
TY  - JOUR
AU  - T. Ogawa
AU  - R. Collins
TI  - Chains, Flowers, Rings and Peanuts: Graphical Geodesic Lines and Their Application to Penrose Tiling
JO  - Visual Mathematics
PY  - 1999
VL  - 1
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VM_1999_1_4_a5/
LA  - en
ID  - VM_1999_1_4_a5
ER  - 
%0 Journal Article
%A T. Ogawa
%A R. Collins
%T Chains, Flowers, Rings and Peanuts: Graphical Geodesic Lines and Their Application to Penrose Tiling
%J Visual Mathematics
%D 1999
%V 1
%N 4
%U http://geodesic.mathdoc.fr/item/VM_1999_1_4_a5/
%G en
%F VM_1999_1_4_a5
T. Ogawa; R. Collins. Chains, Flowers, Rings and Peanuts: Graphical Geodesic Lines and Their Application to Penrose Tiling. Visual Mathematics, Tome 1 (1999) no. 4. http://geodesic.mathdoc.fr/item/VM_1999_1_4_a5/