Operator model of the Benard problem and its spectral analysis
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2025), pp. 23-29
Voir la notice de l'article provenant de la source Math-Net.Ru
An operator model of the Benard problem is constructed and spectral analysis of the resulting operator is performed. The asymptotics of the eigenvalues is obtained, it is proved that the system of eigenvalues and attached vectors form the Riesz basis with parentheses.
@article{VMUMM_2025_2_a3,
author = {G. A. Agafonkin and N. N. Nefedov and I. A. Sheipak},
title = {Operator model of the {Benard} problem and its spectral analysis},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--29},
publisher = {mathdoc},
number = {2},
year = {2025},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a3/}
}
TY - JOUR AU - G. A. Agafonkin AU - N. N. Nefedov AU - I. A. Sheipak TI - Operator model of the Benard problem and its spectral analysis JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2025 SP - 23 EP - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a3/ LA - ru ID - VMUMM_2025_2_a3 ER -
%0 Journal Article %A G. A. Agafonkin %A N. N. Nefedov %A I. A. Sheipak %T Operator model of the Benard problem and its spectral analysis %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2025 %P 23-29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a3/ %G ru %F VMUMM_2025_2_a3
G. A. Agafonkin; N. N. Nefedov; I. A. Sheipak. Operator model of the Benard problem and its spectral analysis. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2025), pp. 23-29. http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a3/