On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2025), pp. 90-95
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A conservative system with one degree of freedom admitting a periodic motion is considered. The system is located on a translationally moving base. Linear viscous friction forces are added to the forces acting on the points of the system. We determine the law of motion of the base that allows one to preserve the periodic motion of the initial system relative to this base. The conditions when the periodic motion becomes Lyapunov asymptotically stable have been obtained by using the Vazhevsky inequality.
			
            
            
            
          
        
      @article{VMUMM_2025_2_a15,
     author = {V. A. Zubenko and E. I. Kugushev and T. V. Popova},
     title = {On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {90--95},
     publisher = {mathdoc},
     number = {2},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a15/}
}
                      
                      
                    TY - JOUR AU - V. A. Zubenko AU - E. I. Kugushev AU - T. V. Popova TI - On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2025 SP - 90 EP - 95 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a15/ LA - ru ID - VMUMM_2025_2_a15 ER -
%0 Journal Article %A V. A. Zubenko %A E. I. Kugushev %A T. V. Popova %T On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2025 %P 90-95 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a15/ %G ru %F VMUMM_2025_2_a15
V. A. Zubenko; E. I. Kugushev; T. V. Popova. On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2025), pp. 90-95. http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a15/
