On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2025), pp. 90-95

Voir la notice de l'article provenant de la source Math-Net.Ru

A conservative system with one degree of freedom admitting a periodic motion is considered. The system is located on a translationally moving base. Linear viscous friction forces are added to the forces acting on the points of the system. We determine the law of motion of the base that allows one to preserve the periodic motion of the initial system relative to this base. The conditions when the periodic motion becomes Lyapunov asymptotically stable have been obtained by using the Vazhevsky inequality.
@article{VMUMM_2025_2_a15,
     author = {V. A. Zubenko and E. I. Kugushev and T. V. Popova},
     title = {On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {90--95},
     publisher = {mathdoc},
     number = {2},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a15/}
}
TY  - JOUR
AU  - V. A. Zubenko
AU  - E. I. Kugushev
AU  - T. V. Popova
TI  - On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2025
SP  - 90
EP  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a15/
LA  - ru
ID  - VMUMM_2025_2_a15
ER  - 
%0 Journal Article
%A V. A. Zubenko
%A E. I. Kugushev
%A T. V. Popova
%T On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2025
%P 90-95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a15/
%G ru
%F VMUMM_2025_2_a15
V. A. Zubenko; E. I. Kugushev; T. V. Popova. On the possibility of dissipative stabilization of periodic motion of a system with one degree of freedom. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2025), pp. 90-95. http://geodesic.mathdoc.fr/item/VMUMM_2025_2_a15/