Symmetric cavitation flow around a cylinder under point effluent on its surface
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 61-66
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the problem of a symmetric stationary cavitation flow around a cylinder by an infinite flow of ideal incompressible weightless fluid in the presence of a given intensity point effluent located at the front point of the cylinder is considered. The exact solution of the problem is constructed by displaying the areas of change complex potential and complex flow velocity per area change of the auxiliary parametric variable. A parametric analysis of the problem is performed. For a wide range values of the cavitation number, the dimensionless flow rate, the shape and dimensions of the cavitation cavity, and the values of the drag coefficient are found.
@article{VMUMM_2024_5_a6,
     author = {A. A. Spasova and S. L. Tolokonnikov},
     title = {Symmetric cavitation flow around a cylinder under point effluent on its surface},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--66},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a6/}
}
TY  - JOUR
AU  - A. A. Spasova
AU  - S. L. Tolokonnikov
TI  - Symmetric cavitation flow around a cylinder under point effluent on its surface
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 61
EP  - 66
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a6/
LA  - ru
ID  - VMUMM_2024_5_a6
ER  - 
%0 Journal Article
%A A. A. Spasova
%A S. L. Tolokonnikov
%T Symmetric cavitation flow around a cylinder under point effluent on its surface
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 61-66
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a6/
%G ru
%F VMUMM_2024_5_a6
A. A. Spasova; S. L. Tolokonnikov. Symmetric cavitation flow around a cylinder under point effluent on its surface. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 61-66. http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a6/

[1] Elizarov A.M., Ilinskii N.B., Potashev A.V., Obratnye kraevye zadachi aerogidrodinamiki: teoriya i metody proektirovaniya i optimizatsii formy krylovykh profilei, Nauka, M., 1994

[2] Ilinskii N.B., Abzalilov D.F., Matematicheskie problemy proektirovaniya krylovykh profilei: uslozhnennye skhemy techeniya; postroenie i optimizatsiya formy krylovykh profilei, Izd-vo Kazan. un-ta, Kazan, 2011

[3] Shurygin V.M., Aerodinamika tel so struyami, Mashinostroenie, M., 1977

[4] Sedov L.I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1994

[5] Sotina N.B., Fominykh V.V., “O modelirovanii istochnikom tonkoi struiki, vytekayuschei iz tela”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1979, no. 5, 47–54

[6] Mukhina T.G., “O kavitatsionnom obtekanii plastinki s istochnikom”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1979, no. 5, 157–161

[7] Sotina N.B., Fominykh V.V., “Kavitatsionnoe obtekanie klina pri nalichii istochnika v kline ili potoke”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1979, no. 6, 137–141

[8] Sotina N.B., “Asimptoticheskii zakon rasshireniya kaverny pri nalichii v potoke gidrodinamicheskikh osobennostei”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1977, no. 3, 153–155

[9] Petrov A.G., Sotina N.B., “Universalnye, ne zavisyaschie ot formy kavitatora sootnosheniya pri malykh chislakh kavitatsii”, Zhurn. prikl. mekhan. i tekhn. fiz., 1984, no. 5, 110–117

[10] Petrov A.G., Analiticheskaya gidrodinamika, Nauka, M., 2010

[11] Shtanko V.A., “O struinom obtekanii plastinki, v tsentre kotoroi raspolozhen istochnik ili stok”, Tr. NII prikl. matem. i mekhan. pri Tomsk. un-te, 7 (1976), 120–123

[12] Tolokonnikov S.L., Spasova A.A., “Kavitatsionnoe obtekanie klina pri nalichii raspolozhennogo v ego vershine tochechnogo stoka”, Chebyshevskii sb., XXIV:1 (87) (2023), 294–303 | DOI

[13] Gurevich M.I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[14] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973