D’Alembert’s principle and classical relativity in the Lagrangian mechanics
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 53-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we present an invariant formulation of the d'Alambert principle and classical time-dependent Lagrangian mechanics with holonomic constraints from the perspective of moving frames.
@article{VMUMM_2024_5_a5,
     author = {B. Jovanovi\'c},
     title = {D{\textquoteright}Alembert{\textquoteright}s principle and classical relativity in the {Lagrangian} mechanics},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--61},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a5/}
}
TY  - JOUR
AU  - B. Jovanović
TI  - D’Alembert’s principle and classical relativity in the Lagrangian mechanics
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 53
EP  - 61
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a5/
LA  - ru
ID  - VMUMM_2024_5_a5
ER  - 
%0 Journal Article
%A B. Jovanović
%T D’Alembert’s principle and classical relativity in the Lagrangian mechanics
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 53-61
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a5/
%G ru
%F VMUMM_2024_5_a5
B. Jovanović. D’Alembert’s principle and classical relativity in the Lagrangian mechanics. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 53-61. http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a5/

[1] Appell P., Traite de mecanique rationnelle, v. 2, Gauthier–Villars, 1953

[2] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989

[3] Arnold V.I., Kozlov V.V., Neishtadt A., Mathematical Aspects of Classical and Celestial Mechanics, Springer, 2006

[4] Leon de M., Marin-Solano J., Marrero J. C., “The constraint algorithm in the jet formalism”, Diff. Geometry and its Appl., 6:3 (1996), 275–300 | DOI

[5] Massa E., Pagani E., “A new look at classical mechanics of constrained systems”, Ann. Inst. H. Poencaré. A, 66:1 (1997), 1–36

[6] Bolotin S.V., Karapetyan A.V., Kugushev E.I., Treschev D.V., Teoreticheskaya mekhanika, Akademiya, M., 2010

[7] L.S. Polak (red.), Variatsionnye printsipy mekhaniki, sb. statei klassikov nauki, Fizmatgiz, M., 1959

[8] Federico S., Alhasad M. F., “Inverse dynamics in rigid body mechanics”, Theor. and Appl. Mech., 49 (2022), 157–181 | DOI

[9] Zubelevich O.E., “Printsip Dalambera–Lagranzha: geometricheskii aspekt”, Sib. zhurn. industr. matem., 23:3 (2020), 31–39

[10] Poincaré H., La Science et l'Hypothese, Paris, 1902; Science and Hypothesis, The Walter Scott Publishing co., ltd., N.Y., 1905

[11] Jovanović B., “Noether symmetries and integrability in time-dependent Hamiltonian mechanics”, Theor. and Appl. Mech., 43 (2016), 255–273 | DOI

[12] Jovanović B., “Affine geometry and relativity”, Found. Phys., 53 (2023), 60 | DOI

[13] Jovanović B., Lukić K., “Integrable systems in cosymplectic geometry”, J. Phys. A: Math. and Theor., 56 (2023), 015201 | DOI