@article{VMUMM_2024_1_a7,
author = {A. V. Romanov},
title = {Application of the reduced and selective integration method in micro-polar elasticity problems},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {65--69},
year = {2024},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a7/}
}
TY - JOUR AU - A. V. Romanov TI - Application of the reduced and selective integration method in micro-polar elasticity problems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2024 SP - 65 EP - 69 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a7/ LA - ru ID - VMUMM_2024_1_a7 ER -
A. V. Romanov. Application of the reduced and selective integration method in micro-polar elasticity problems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 65-69. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a7/
[1] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Ucheb. posobie, 2-e izd., Izd-vo MGU, M., 1995 | MR
[2] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[3] Novatskii V., Teoriya uprugosti, Mir, M., 1975
[4] Eringen A.C., Microcontinuum Field Theories, v. 1, Foundation and Solids, Springer-Verlag, N.Y., 1999 | MR | Zbl
[5] Nikabadze M.U., Razvitie metoda ortogonalnykh polinomov v mekhanike mikropolyarnykh i klassicheskikh uprugikh tonkikh tel, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU im. M.V. Lomonosova, M., 2014 https://istina.msu.ru/publications/book/6738800/
[6] Nikabadze M., Ulukhanyan A., “Some variational principles in the three-dimensional micropolar theories of solids and thin solids”, Theoretical Analysis, Computations, and Experiments of Multiscale Materials, Advanced Structured Materials, 175, Switzerland, 2022, 193–251 | DOI | MR
[7] Nikabadze M., Ulukhanyan A., “On some variational principles in micropolar theories of single-layer thin bodies”, Continuum Mechanics and Thermodynamics, 2022 | DOI | MR
[8] Nikabadze M., Ulukhanyan A., “Generalized Reissner-type variational principle in the micropolar theories of multilayer thin bodies with one small size”, Continuum Mechanics and Thermodynamics, 34:2 (2022) | DOI | MR
[9] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti v sluchae transversalno-izotropnoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 4, 35–39
[10] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti v sluchae ortotropnoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 1, 68–72 | DOI | MR
[11] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti pri neizotermicheskikh protsessakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 4, 64–68 | DOI
[12] Hughes T. J. R., Cohen M., Haroun M., “Reduced and selective integration techniques in the finite element analysis of plates”, Nuclear Engineering and Design, 46 (1978), 203–222 | DOI
[13] Lakes R.S., “Experimental methods for study of Cosserat elastic solids and other generalized continua”, Continuum models for materials with micro-structure, ed. H. Muhlhaus, J. Wiley, N.Y., 1995, 1–22
[14] Lakes R.S., “Experimental microelasticity of two porous solids”, Int. J. Solids and Struct., 22:1 (1986), 55–63 | DOI
[15] Lakes R.S., “Cosserat micromechanics of structured media: Experimental methods”, Proc. Amer. Soc. Composites. 3rd Technical Conf. (Sept. 25–29. Seatle, 1988), 505–516