Limit domain of attainability for a linear oscillating third-order system of a special type
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 65-69

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem under consideration is to find periodic trajectories lying on the boundary of the limit region of reachability of a linear time-invariant third order system with one controlling action bounded in absolute value. It is assumed that the characteristic equation of a homogeneous system has one negative real root and two complex conjugates roots, the real parts of all three roots are the same. The results obtained make it possible to construct the boundary of the limit reachability region (for an infinitely long control time) in the form of analytical expressions on the system parameters.
@article{VMUMM_2023_5_a9,
     author = {D. I. Bugrov},
     title = {Limit domain of attainability for a linear oscillating third-order system of a special type},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--69},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/}
}
TY  - JOUR
AU  - D. I. Bugrov
TI  - Limit domain of attainability for a linear oscillating third-order system of a special type
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 65
EP  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/
LA  - ru
ID  - VMUMM_2023_5_a9
ER  - 
%0 Journal Article
%A D. I. Bugrov
%T Limit domain of attainability for a linear oscillating third-order system of a special type
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 65-69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/
%G ru
%F VMUMM_2023_5_a9
D. I. Bugrov. Limit domain of attainability for a linear oscillating third-order system of a special type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 65-69. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/