Limit domain of attainability for a linear oscillating third-order system of a special type
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 65-69
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem under consideration is to find periodic trajectories lying on the boundary of the limit region of reachability of a linear time-invariant third order system with one controlling action bounded in absolute value. It is assumed that the characteristic equation of a homogeneous system has one negative real root and two complex conjugates roots, the real parts of all three roots are the same. The results obtained make it possible to construct the boundary of the limit reachability region (for an infinitely long control time) in the form of analytical expressions on the system parameters.
			
            
            
            
          
        
      @article{VMUMM_2023_5_a9,
     author = {D. I. Bugrov},
     title = {Limit domain of attainability for a linear oscillating third-order system of a special type},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--69},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/}
}
                      
                      
                    TY - JOUR AU - D. I. Bugrov TI - Limit domain of attainability for a linear oscillating third-order system of a special type JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 65 EP - 69 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/ LA - ru ID - VMUMM_2023_5_a9 ER -
D. I. Bugrov. Limit domain of attainability for a linear oscillating third-order system of a special type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 65-69. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/
