Limit domain of attainability for a linear oscillating third-order system of a special type
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 65-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem under consideration is to find periodic trajectories lying on the boundary of the limit region of reachability of a linear time-invariant third order system with one controlling action bounded in absolute value. It is assumed that the characteristic equation of a homogeneous system has one negative real root and two complex conjugates roots, the real parts of all three roots are the same. The results obtained make it possible to construct the boundary of the limit reachability region (for an infinitely long control time) in the form of analytical expressions on the system parameters.
@article{VMUMM_2023_5_a9,
     author = {D. I. Bugrov},
     title = {Limit domain of attainability for a linear oscillating third-order system of a special type},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--69},
     year = {2023},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/}
}
TY  - JOUR
AU  - D. I. Bugrov
TI  - Limit domain of attainability for a linear oscillating third-order system of a special type
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 65
EP  - 69
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/
LA  - ru
ID  - VMUMM_2023_5_a9
ER  - 
%0 Journal Article
%A D. I. Bugrov
%T Limit domain of attainability for a linear oscillating third-order system of a special type
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 65-69
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/
%G ru
%F VMUMM_2023_5_a9
D. I. Bugrov. Limit domain of attainability for a linear oscillating third-order system of a special type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 65-69. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a9/

[1] Formalskii A.M., Upravlyaemost i ustoichivost sistem s ogranichennymi resursami, Nauka, M., 1974 | MR

[2] Chernousko F.L., Ovseevich A.I., “Ellipsoidal bounds of reachable sets: overview and new results”, J. Optimiz. Theory and Appl, 38:2 (2004), 223–246 | DOI

[3] Ushakov V.A., “Postroenie i approksimatsiya oblastei dostizhimosti: obzor suschestvuyuschikh reshenii i vybor programmnogo obespecheniya”, Sb. tr. mezhreg. konf. i Sankt-Peterburgskoi mezhdunar. konf. “Informatsionnaya bezopasnost regionov Rossii. Regionalnaya informatika (RI-2018)” (Sankt-Peterburg, 24–26 oktyabrya 2018 g.), Sankt-Peterburgskoe obschestvo informatiki, vychislitelnoi tekhniki, sistem svyazi i upravleniya, SPb., 2018, 253–257

[4] Patsko V., Fedotov A., “Three-dimensional reachable set for the Dubins car: Foundation of analytical description”, Communs Optimiz. Theory, 23 (2022), 1–42 | MR

[5] Allen R.E., Clark A.A., Starek J.A., Pavone M., “A machine learning approach for real-time reachability analysis”, 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (Chicago, IL, USA, 2014), 2014, 2202–2208

[6] Bugrov D.I., Formalskii A.M., “Zavisimost ot vremeni oblastei dostizhimosti sistem tretego poryadka”, Prikl. matem. i mekhan, 81:2 (2017), 154–164 | Zbl

[7] Polyak B.T., Scherbakov P.S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002

[8] Zubov V.I., Kolebaniya v nelineinykh i upravlyaemykh sistemakh, SUDPROMGIZ, L., 1962

[9] Zhermolenko V.N., “Predelnye tsikly na fazovoi ploskosti”, Zadacha Bulgakova o maksimalnom otklonenii i ee primenenie, Izd-vo MGU, M., 1993, 35–47 | Zbl

[10] Aleksandrov V.V., Bugrov D.I., Zhermolenko V.N., Konovalenko I.S., “Mnozhestvo dostizhimosti i robastnaya ustoichivost vozmuschaemykh kolebatelnykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan, 2021, no. 1, 67–71 | Zbl