Invariant sums of products of differentials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 53-57

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the method proposed for solving the so-called $(r, s)$-systems of linear equations, it is proved that the orders of homogeneous invariant differential operators $n$ of smooth real functions of one variable take values from $n$ to $\frac{n(n+1)}2$, and the dimension of the space of all such operators does not exceed $n!$. A classification of invariant differential operators of order $n+s$ is obtained for $s = 1, 2, 3, 4$, and for $n=4$ for all orders from 4 to 10. Homogeneous invariant differential operators of the smallest order $n$ and the largest order $\frac{n(n+1)}{2}$ are given, respectively, by the product of the $n$ first differentials $(s=0)$ and the Wronskian $(s=(n-1)n/2)$. The existence of nonzero homogeneous invariant differential operators of order $n+s$ for $s\frac{1+\sqrt{5}}{2}(n-1)$ is proved.
@article{VMUMM_2023_4_a8,
     author = {F. M. Malyshev},
     title = {Invariant sums of products of differentials},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--57},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a8/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Invariant sums of products of differentials
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 53
EP  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a8/
LA  - ru
ID  - VMUMM_2023_4_a8
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Invariant sums of products of differentials
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 53-57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a8/
%G ru
%F VMUMM_2023_4_a8
F. M. Malyshev. Invariant sums of products of differentials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a8/