Invariant sums of products of differentials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 53-57
Cet article a éte moissonné depuis la source Math-Net.Ru
Based on the method proposed for solving the so-called $(r, s)$-systems of linear equations, it is proved that the orders of homogeneous invariant differential operators $n$ of smooth real functions of one variable take values from $n$ to $\frac{n(n+1)}2$, and the dimension of the space of all such operators does not exceed $n!$. A classification of invariant differential operators of order $n+s$ is obtained for $s = 1, 2, 3, 4$, and for $n=4$ for all orders from 4 to 10. Homogeneous invariant differential operators of the smallest order $n$ and the largest order $\frac{n(n+1)}{2}$ are given, respectively, by the product of the $n$ first differentials $(s=0)$ and the Wronskian $(s=(n-1)n/2)$. The existence of nonzero homogeneous invariant differential operators of order $n+s$ for $s<\frac{1+\sqrt{5}}{2}(n-1)$ is proved.
@article{VMUMM_2023_4_a8,
author = {F. M. Malyshev},
title = {Invariant sums of products of differentials},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {53--57},
year = {2023},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a8/}
}
F. M. Malyshev. Invariant sums of products of differentials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a8/
[1] Arkhipov G.I., Sadovnichii V.A., Chubarikov V.N., Lektsii po matematicheskomu analizu, Vysshaya shkola, M., 1999
[2] Malyshev F.M., “Simplitsialnye sistemy lineinykh uravnenii”, Algebra, Izd-vo MGU, M., 1980, 53–56
[3] Kirillov A.A., “Invariantnye operatory nad geometricheskimi velichinami”, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat., 16, VINITI, M., 1980, 3–29