Steiner points in $l_\infty^2$ spaсe
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 14-19

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for a given set of pairwise distinct points $x_1, \dots, x_n$ the sum of the distances from these points to their Steiner point in $l_\infty^2$ space is equal to the maximum of the sum of lengths of $[\frac{n}{2}] - 1$ separate segments and either a semi-perimeter of a triangle, or another segment with vertices in this set. The case of coincident points among $x_1, \dots, x_n$ is also studied.
@article{VMUMM_2023_1_a1,
     author = {B. B. Bednov},
     title = {Steiner points in $l_\infty^2$ spa{\cyrs}e},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {14--19},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a1/}
}
TY  - JOUR
AU  - B. B. Bednov
TI  - Steiner points in $l_\infty^2$ spaсe
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 14
EP  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a1/
LA  - ru
ID  - VMUMM_2023_1_a1
ER  - 
%0 Journal Article
%A B. B. Bednov
%T Steiner points in $l_\infty^2$ spaсe
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 14-19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a1/
%G ru
%F VMUMM_2023_1_a1
B. B. Bednov. Steiner points in $l_\infty^2$ spaсe. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 14-19. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a1/