Steiner points in $l_\infty^2$ spaсe
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 14-19
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for a given set of pairwise distinct points $x_1, \dots, x_n$ the sum of the distances from these points to their Steiner point in $l_\infty^2$ space is equal to the maximum of the sum of lengths of $[\frac{n}{2}] - 1$ separate segments and either a semi-perimeter of a triangle, or another segment with vertices in this set. The case of coincident points among $x_1, \dots, x_n$ is also studied.
@article{VMUMM_2023_1_a1,
author = {B. B. Bednov},
title = {Steiner points in $l_\infty^2$ spa{\cyrs}e},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {14--19},
publisher = {mathdoc},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a1/}
}
B. B. Bednov. Steiner points in $l_\infty^2$ spaсe. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2023), pp. 14-19. http://geodesic.mathdoc.fr/item/VMUMM_2023_1_a1/