On the cardinality of interval Int(Pol$_k$) in partial $k$-valued logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 11-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Let Pol$_k$ be the set of all functions of $k$-valued logic representable by a polynomial modulo $k$, and let Int(Pol$_k$) be the family of all closed classes (with respect to superposition) in the partial $k$-valued logic containing Pol$_k$ and consisting only of functions extendable to some function from Pol$_k$. In this paper, we prove that if $k$ is divisible by the square of a prime number, then the family Int(Pol$_k$) contains an infinitely increasing (with respect to inclusion) chain of different closed classes. This result and the results obtained by the author earlier imply that the family Int(Pol$_k$) contains a finite number of closed classes if and only if $k$ is a prime number or a product of two different primes.
@article{VMUMM_2022_3_a2,
     author = {V. B. Alekseev},
     title = {On the cardinality of interval {Int(Pol}$_k$) in partial $k$-valued logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--17},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a2/}
}
TY  - JOUR
AU  - V. B. Alekseev
TI  - On the cardinality of interval Int(Pol$_k$) in partial $k$-valued logic
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 11
EP  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a2/
LA  - ru
ID  - VMUMM_2022_3_a2
ER  - 
%0 Journal Article
%A V. B. Alekseev
%T On the cardinality of interval Int(Pol$_k$) in partial $k$-valued logic
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 11-17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a2/
%G ru
%F VMUMM_2022_3_a2
V. B. Alekseev. On the cardinality of interval Int(Pol$_k$) in partial $k$-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 11-17. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a2/