On the cardinality of interval Int(Pol$_k$) in partial $k$-valued logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 11-17
Voir la notice de l'article provenant de la source Math-Net.Ru
Let Pol$_k$ be the set of all functions of $k$-valued logic representable by a polynomial modulo $k$, and let Int(Pol$_k$) be the family of all closed classes (with respect to superposition) in the partial $k$-valued logic containing Pol$_k$ and consisting only of functions extendable to some function from Pol$_k$. In this paper, we prove that if $k$ is divisible by the square of a prime number, then the family Int(Pol$_k$) contains an infinitely increasing (with respect to inclusion) chain of different closed classes. This result and the results obtained by the author earlier imply that the family Int(Pol$_k$) contains a finite number of closed classes if and only if $k$ is a prime number or a product of two different primes.
@article{VMUMM_2022_3_a2,
author = {V. B. Alekseev},
title = {On the cardinality of interval {Int(Pol}$_k$) in partial $k$-valued logic},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {11--17},
publisher = {mathdoc},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a2/}
}
TY - JOUR AU - V. B. Alekseev TI - On the cardinality of interval Int(Pol$_k$) in partial $k$-valued logic JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2022 SP - 11 EP - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a2/ LA - ru ID - VMUMM_2022_3_a2 ER -
V. B. Alekseev. On the cardinality of interval Int(Pol$_k$) in partial $k$-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2022), pp. 11-17. http://geodesic.mathdoc.fr/item/VMUMM_2022_3_a2/