Relation of the modern theory of disperse systems with the classical filtration theory
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 54-60

Voir la notice de l'article provenant de la source Math-Net.Ru

The article examines how the filtration theory should look from the point of view of the modern theory of dispersed systems, which is a non-trivial generalization of the classical theory of Brownian motion.
@article{VMUMM_2022_1_a6,
     author = {Ya. D. Yankov},
     title = {Relation of the modern theory of disperse systems with the classical filtration theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--60},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a6/}
}
TY  - JOUR
AU  - Ya. D. Yankov
TI  - Relation of the modern theory of disperse systems with the classical filtration theory
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 54
EP  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a6/
LA  - ru
ID  - VMUMM_2022_1_a6
ER  - 
%0 Journal Article
%A Ya. D. Yankov
%T Relation of the modern theory of disperse systems with the classical filtration theory
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 54-60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a6/
%G ru
%F VMUMM_2022_1_a6
Ya. D. Yankov. Relation of the modern theory of disperse systems with the classical filtration theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 54-60. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a6/