Relation of the modern theory of disperse systems with the classical filtration theory
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 54-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article examines how the filtration theory should look from the point of view of the modern theory of dispersed systems, which is a non-trivial generalization of the classical theory of Brownian motion.
@article{VMUMM_2022_1_a6,
     author = {Ya. D. Yankov},
     title = {Relation of the modern theory of disperse systems with the classical filtration theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--60},
     year = {2022},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a6/}
}
TY  - JOUR
AU  - Ya. D. Yankov
TI  - Relation of the modern theory of disperse systems with the classical filtration theory
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2022
SP  - 54
EP  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a6/
LA  - ru
ID  - VMUMM_2022_1_a6
ER  - 
%0 Journal Article
%A Ya. D. Yankov
%T Relation of the modern theory of disperse systems with the classical filtration theory
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2022
%P 54-60
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a6/
%G ru
%F VMUMM_2022_1_a6
Ya. D. Yankov. Relation of the modern theory of disperse systems with the classical filtration theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2022), pp. 54-60. http://geodesic.mathdoc.fr/item/VMUMM_2022_1_a6/

[1] Yankov Ya. D., Sovremennaya teoriya dispersnykh sistem, Dep. v VINITI RAN 30.08.2016, No 123-V2016, M., 2016

[2] Yankov Ya. D., “Granichnye usloviya v sovremennoi teorii dispersnykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 1, 33–39

[3] Einstein A., “Uber die von der molekular-kinetischen Theorie der Wàrme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchem”, Ann. Phys., 17 (1905), 549–560 ; Einshtein A., “O dvizhenii vzveshennykh v pokoyascheisya zhidkosti chastits, trebuemom molekulyarno-kineticheskoi teoriei teploty”, Sobr. nauch. tr., v. 3, Nauka, M., 1966, 108–117 | DOI | Zbl

[4] Einstein A., “Zur Theorie der Brownschen Bewegung”, Ann. Phys., 19 (1906), 371–381 ; Einshtein A., “K teorii brounovskogo dvizheniya”, Sobr. nauch. tr., v. 3, Nauka, M., 1966, 118–127 | DOI | Zbl

[5] Smoluchowski M., “Zur kinetischen Theorie der Brownschen Molekularbewegung und Suspensionen”, Ann. Phys., 21 (1906), 756–780 ; Smolukhovskii M., “Kineticheskaya teoriya brounovskogo molekulyarnogo dvizheniya i suspenzii”, Brounovskoe dvizhenie, ed. B.I. Davydov, ONTI, M., 1936, 133–165 | DOI | Zbl

[6] Leibenzon L. S., Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede, Gostekhizdat, M., 1947