Lower bound of circuit complexity of parity function in a basis of unbounded fan-in
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2021), pp. 48-51

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is focused on realization of parity functions by circuits in the basis $U_\infty$. This basis contains all functions of the form $x_1^{\sigma_1}\\ldots\ x_k^{\sigma_k}$. It is proved that every circuit over $U_\infty$ computing a parity function of $n$ variables contains at least $2\frac{1}{9}n+\Theta(1)$ gates.
@article{VMUMM_2021_6_a7,
     author = {Yu. A. Kombarov},
     title = {Lower bound of circuit complexity of parity function in a basis of unbounded fan-in},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--51},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a7/}
}
TY  - JOUR
AU  - Yu. A. Kombarov
TI  - Lower bound of circuit complexity of parity function in a basis of unbounded fan-in
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 48
EP  - 51
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a7/
LA  - ru
ID  - VMUMM_2021_6_a7
ER  - 
%0 Journal Article
%A Yu. A. Kombarov
%T Lower bound of circuit complexity of parity function in a basis of unbounded fan-in
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 48-51
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a7/
%G ru
%F VMUMM_2021_6_a7
Yu. A. Kombarov. Lower bound of circuit complexity of parity function in a basis of unbounded fan-in. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2021), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a7/