Lower bound of circuit complexity of parity function in a basis of unbounded fan-in
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2021), pp. 48-51
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is focused on realization of parity functions by circuits in the basis $U_\infty$. This basis contains all functions of the form $x_1^{\sigma_1}\\ldots\ x_k^{\sigma_k}$. It is proved that every circuit over $U_\infty$ computing a parity function of $n$ variables contains at least $2\frac{1}{9}n+\Theta(1)$ gates.
@article{VMUMM_2021_6_a7, author = {Yu. A. Kombarov}, title = {Lower bound of circuit complexity of parity function in a basis of unbounded fan-in}, journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika}, pages = {48--51}, publisher = {mathdoc}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a7/} }
TY - JOUR AU - Yu. A. Kombarov TI - Lower bound of circuit complexity of parity function in a basis of unbounded fan-in JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2021 SP - 48 EP - 51 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a7/ LA - ru ID - VMUMM_2021_6_a7 ER -
Yu. A. Kombarov. Lower bound of circuit complexity of parity function in a basis of unbounded fan-in. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2021), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a7/