Lindemann--Weierstrass theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2021), pp. 3-7
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss issues of algebraic independence for values of the function $e^z$ at algebraic points. The most general result of this kind was established at the end of the 19th century and is called the Lindemann–Weierstrass theorem. This is historically the first theorem on the algebraic independence of numbers and it can be proved now in various ways. Below we propose one more way to prove it.
@article{VMUMM_2021_6_a0,
author = {Yu. V. Nesterenko},
title = {Lindemann--Weierstrass theorem},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--7},
publisher = {mathdoc},
number = {6},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a0/}
}
Yu. V. Nesterenko. Lindemann--Weierstrass theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2021), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a0/