Lindemann--Weierstrass theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2021), pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss issues of algebraic independence for values of the function $e^z$ at algebraic points. The most general result of this kind was established at the end of the 19th century and is called the Lindemann–Weierstrass theorem. This is historically the first theorem on the algebraic independence of numbers and it can be proved now in various ways. Below we propose one more way to prove it.
@article{VMUMM_2021_6_a0,
     author = {Yu. V. Nesterenko},
     title = {Lindemann--Weierstrass theorem},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a0/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Lindemann--Weierstrass theorem
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 3
EP  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a0/
LA  - ru
ID  - VMUMM_2021_6_a0
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Lindemann--Weierstrass theorem
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 3-7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a0/
%G ru
%F VMUMM_2021_6_a0
Yu. V. Nesterenko. Lindemann--Weierstrass theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2021), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2021_6_a0/