The definition of the indices of oscillation, rotation, and wandering of nonlinear differential systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2021), pp. 41-46

Voir la notice de l'article provenant de la source Math-Net.Ru

The definitions of the indices of oscillation, rotation and wandering, similar to the Lyapunov exponents and suitable for nonlinear systems are given. Definitions are valid even when solutions are not defined on the entire positive time semiaxis. The coincidence of the new indicators with those previously known in the case of a linear system is established. Various relationships between these indicators have been studied.
@article{VMUMM_2021_3_a5,
     author = {I. N. Sergeev},
     title = {The definition of the indices of oscillation, rotation, and wandering of nonlinear differential systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {41--46},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a5/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - The definition of the indices of oscillation, rotation, and wandering of nonlinear differential systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2021
SP  - 41
EP  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a5/
LA  - ru
ID  - VMUMM_2021_3_a5
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T The definition of the indices of oscillation, rotation, and wandering of nonlinear differential systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2021
%P 41-46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a5/
%G ru
%F VMUMM_2021_3_a5
I. N. Sergeev. The definition of the indices of oscillation, rotation, and wandering of nonlinear differential systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2021), pp. 41-46. http://geodesic.mathdoc.fr/item/VMUMM_2021_3_a5/